This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring1ne0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ring1ne0.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ring1ne0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | ring1ne0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1ne0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ring1ne0.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | ring1ne0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 5 | hashgt12el | ⊢ ( ( 𝐵 ∈ V ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) | |
| 6 | 4 5 | mpan | ⊢ ( 1 < ( ♯ ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
| 8 | 1 2 3 | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 1 = 0 → 𝑥 = 𝑦 ) ) |
| 9 | 8 | necon3d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → 1 ≠ 0 ) ) |
| 10 | 9 | 3expib | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → 1 ≠ 0 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → 1 ≠ 0 ) ) ) |
| 12 | 11 | com3l | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) ) ) |
| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 → ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) ) |
| 14 | 7 13 | mpcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) |