This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nzrpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| nzrpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| nzrpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| nzrpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | nzrpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | nzrpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | nzrpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | nzrpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 6 | 1 2 4 | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
| 7 | 1 2 3 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 8 | 6 7 | neeq12d | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ↔ ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ↔ ( 𝐿 ∈ Ring ∧ ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) ) ) |
| 10 | eqid | ⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 12 | 10 11 | isnzr | ⊢ ( 𝐾 ∈ NzRing ↔ ( 𝐾 ∈ Ring ∧ ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 13 | eqid | ⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) | |
| 14 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 15 | 13 14 | isnzr | ⊢ ( 𝐿 ∈ NzRing ↔ ( 𝐿 ∈ Ring ∧ ( 1r ‘ 𝐿 ) ≠ ( 0g ‘ 𝐿 ) ) ) |
| 16 | 9 12 15 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) ) |