This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) | |
| 2 | 1 | com12 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∈ Fin → 𝐵 ≼ 𝐴 ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∈ Fin → 𝐵 ≼ 𝐴 ) ) |
| 4 | 3 | impcom | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ≼ 𝐴 ) |
| 5 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 6 | 5 | adantrl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 ∈ Fin ) | |
| 8 | hashdom | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) |
| 10 | 4 9 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 11 | 10 | ex | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 12 | hashinf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 13 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ∈ V ) | |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 15 | hashxrcl | ⊢ ( 𝐵 ∈ V → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) | |
| 16 | pnfge | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℝ* → ( ♯ ‘ 𝐵 ) ≤ +∞ ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ +∞ ) |
| 18 | 17 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
| 20 | breq2 | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) | |
| 21 | 20 | adantr | ⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ 𝐴 ∈ 𝑉 ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
| 22 | 19 21 | sylibrd | ⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 23 | 22 | expcom | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = +∞ → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = +∞ → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
| 25 | 12 24 | mpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 26 | 25 | impancom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ¬ 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 27 | 26 | com12 | ⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 28 | 11 27 | pm2.61i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |