This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isnzr2.b | |- B = ( Base ` R ) |
|
| Assertion | isnzr2 | |- ( R e. NzRing <-> ( R e. Ring /\ 2o ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr2.b | |- B = ( Base ` R ) |
|
| 2 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 3 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 4 | 2 3 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 5 | 1 2 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 6 | 5 | adantr | |- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1r ` R ) e. B ) |
| 7 | 1 3 | ring0cl | |- ( R e. Ring -> ( 0g ` R ) e. B ) |
| 8 | 7 | adantr | |- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 0g ` R ) e. B ) |
| 9 | simpr | |- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
|
| 10 | df-ne | |- ( x =/= y <-> -. x = y ) |
|
| 11 | neeq1 | |- ( x = ( 1r ` R ) -> ( x =/= y <-> ( 1r ` R ) =/= y ) ) |
|
| 12 | 10 11 | bitr3id | |- ( x = ( 1r ` R ) -> ( -. x = y <-> ( 1r ` R ) =/= y ) ) |
| 13 | neeq2 | |- ( y = ( 0g ` R ) -> ( ( 1r ` R ) =/= y <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
|
| 14 | 12 13 | rspc2ev | |- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> E. x e. B E. y e. B -. x = y ) |
| 15 | 6 8 9 14 | syl3anc | |- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> E. x e. B E. y e. B -. x = y ) |
| 16 | 15 | ex | |- ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) -> E. x e. B E. y e. B -. x = y ) ) |
| 17 | 1 2 3 | ring1eq0 | |- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) |
| 18 | 17 | 3expb | |- ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) |
| 19 | 18 | necon3bd | |- ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( -. x = y -> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 20 | 19 | rexlimdvva | |- ( R e. Ring -> ( E. x e. B E. y e. B -. x = y -> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 21 | 16 20 | impbid | |- ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> E. x e. B E. y e. B -. x = y ) ) |
| 22 | 1 | fvexi | |- B e. _V |
| 23 | 1sdom | |- ( B e. _V -> ( 1o ~< B <-> E. x e. B E. y e. B -. x = y ) ) |
|
| 24 | 22 23 | ax-mp | |- ( 1o ~< B <-> E. x e. B E. y e. B -. x = y ) |
| 25 | 21 24 | bitr4di | |- ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> 1o ~< B ) ) |
| 26 | 1onn | |- 1o e. _om |
|
| 27 | sucdom | |- ( 1o e. _om -> ( 1o ~< B <-> suc 1o ~<_ B ) ) |
|
| 28 | 26 27 | ax-mp | |- ( 1o ~< B <-> suc 1o ~<_ B ) |
| 29 | df-2o | |- 2o = suc 1o |
|
| 30 | 29 | breq1i | |- ( 2o ~<_ B <-> suc 1o ~<_ B ) |
| 31 | 28 30 | bitr4i | |- ( 1o ~< B <-> 2o ~<_ B ) |
| 32 | 25 31 | bitrdi | |- ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> 2o ~<_ B ) ) |
| 33 | 32 | pm5.32i | |- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) <-> ( R e. Ring /\ 2o ~<_ B ) ) |
| 34 | 4 33 | bitri | |- ( R e. NzRing <-> ( R e. Ring /\ 2o ~<_ B ) ) |