This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucdom | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucdom2 | ⊢ ( 𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵 ) | |
| 2 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 3 | php4 | ⊢ ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 ) | |
| 4 | sdomdomtrfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
| 5 | 4 | 3expia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ suc 𝐴 ) → ( suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 6 | 2 3 5 | syl2anc | ⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 7 | 1 6 | impbid2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵 ) ) |