This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volres | ⊢ vol = ( vol* ↾ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres | ⊢ ( vol* ↾ dom ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) ) = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) | |
| 2 | df-vol | ⊢ vol = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) | |
| 3 | 2 | dmeqi | ⊢ dom vol = dom ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) |
| 4 | 3 | reseq2i | ⊢ ( vol* ↾ dom vol ) = ( vol* ↾ dom ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) ) |
| 5 | 1 4 2 | 3eqtr4ri | ⊢ vol = ( vol* ↾ dom vol ) |