This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is a basis for the left module or vector space W ". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014) (Revised by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islbs.v | |- V = ( Base ` W ) |
|
| islbs.f | |- F = ( Scalar ` W ) |
||
| islbs.s | |- .x. = ( .s ` W ) |
||
| islbs.k | |- K = ( Base ` F ) |
||
| islbs.j | |- J = ( LBasis ` W ) |
||
| islbs.n | |- N = ( LSpan ` W ) |
||
| islbs.z | |- .0. = ( 0g ` F ) |
||
| Assertion | islbs | |- ( W e. X -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islbs.v | |- V = ( Base ` W ) |
|
| 2 | islbs.f | |- F = ( Scalar ` W ) |
|
| 3 | islbs.s | |- .x. = ( .s ` W ) |
|
| 4 | islbs.k | |- K = ( Base ` F ) |
|
| 5 | islbs.j | |- J = ( LBasis ` W ) |
|
| 6 | islbs.n | |- N = ( LSpan ` W ) |
|
| 7 | islbs.z | |- .0. = ( 0g ` F ) |
|
| 8 | elex | |- ( W e. X -> W e. _V ) |
|
| 9 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 10 | 9 1 | eqtr4di | |- ( w = W -> ( Base ` w ) = V ) |
| 11 | 10 | pweqd | |- ( w = W -> ~P ( Base ` w ) = ~P V ) |
| 12 | fvexd | |- ( w = W -> ( LSpan ` w ) e. _V ) |
|
| 13 | fveq2 | |- ( w = W -> ( LSpan ` w ) = ( LSpan ` W ) ) |
|
| 14 | 13 6 | eqtr4di | |- ( w = W -> ( LSpan ` w ) = N ) |
| 15 | fvexd | |- ( ( w = W /\ n = N ) -> ( Scalar ` w ) e. _V ) |
|
| 16 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 17 | 16 | adantr | |- ( ( w = W /\ n = N ) -> ( Scalar ` w ) = ( Scalar ` W ) ) |
| 18 | 17 2 | eqtr4di | |- ( ( w = W /\ n = N ) -> ( Scalar ` w ) = F ) |
| 19 | simplr | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> n = N ) |
|
| 20 | 19 | fveq1d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( n ` b ) = ( N ` b ) ) |
| 21 | 10 | ad2antrr | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( Base ` w ) = V ) |
| 22 | 20 21 | eqeq12d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( ( n ` b ) = ( Base ` w ) <-> ( N ` b ) = V ) ) |
| 23 | simpr | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> f = F ) |
|
| 24 | 23 | fveq2d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( Base ` f ) = ( Base ` F ) ) |
| 25 | 24 4 | eqtr4di | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( Base ` f ) = K ) |
| 26 | 23 | fveq2d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( 0g ` f ) = ( 0g ` F ) ) |
| 27 | 26 7 | eqtr4di | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( 0g ` f ) = .0. ) |
| 28 | 27 | sneqd | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> { ( 0g ` f ) } = { .0. } ) |
| 29 | 25 28 | difeq12d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( ( Base ` f ) \ { ( 0g ` f ) } ) = ( K \ { .0. } ) ) |
| 30 | fveq2 | |- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
|
| 31 | 30 3 | eqtr4di | |- ( w = W -> ( .s ` w ) = .x. ) |
| 32 | 31 | ad2antrr | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( .s ` w ) = .x. ) |
| 33 | 32 | oveqd | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( y ( .s ` w ) x ) = ( y .x. x ) ) |
| 34 | 19 | fveq1d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( n ` ( b \ { x } ) ) = ( N ` ( b \ { x } ) ) ) |
| 35 | 33 34 | eleq12d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) <-> ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) |
| 36 | 35 | notbid | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) <-> -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) |
| 37 | 29 36 | raleqbidv | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) <-> A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) |
| 38 | 37 | ralbidv | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( A. x e. b A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) <-> A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) |
| 39 | 22 38 | anbi12d | |- ( ( ( w = W /\ n = N ) /\ f = F ) -> ( ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) <-> ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) ) |
| 40 | 15 18 39 | sbcied2 | |- ( ( w = W /\ n = N ) -> ( [. ( Scalar ` w ) / f ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) <-> ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) ) |
| 41 | 12 14 40 | sbcied2 | |- ( w = W -> ( [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / f ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) <-> ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) ) ) |
| 42 | 11 41 | rabeqbidv | |- ( w = W -> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / f ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } = { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } ) |
| 43 | df-lbs | |- LBasis = ( w e. _V |-> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / f ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` f ) \ { ( 0g ` f ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } ) |
|
| 44 | 1 | fvexi | |- V e. _V |
| 45 | 44 | pwex | |- ~P V e. _V |
| 46 | 45 | rabex | |- { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } e. _V |
| 47 | 42 43 46 | fvmpt | |- ( W e. _V -> ( LBasis ` W ) = { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } ) |
| 48 | 5 47 | eqtrid | |- ( W e. _V -> J = { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } ) |
| 49 | 8 48 | syl | |- ( W e. X -> J = { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } ) |
| 50 | 49 | eleq2d | |- ( W e. X -> ( B e. J <-> B e. { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } ) ) |
| 51 | 44 | elpw2 | |- ( B e. ~P V <-> B C_ V ) |
| 52 | 51 | anbi1i | |- ( ( B e. ~P V /\ ( ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) <-> ( B C_ V /\ ( ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
| 53 | fveqeq2 | |- ( b = B -> ( ( N ` b ) = V <-> ( N ` B ) = V ) ) |
|
| 54 | difeq1 | |- ( b = B -> ( b \ { x } ) = ( B \ { x } ) ) |
|
| 55 | 54 | fveq2d | |- ( b = B -> ( N ` ( b \ { x } ) ) = ( N ` ( B \ { x } ) ) ) |
| 56 | 55 | eleq2d | |- ( b = B -> ( ( y .x. x ) e. ( N ` ( b \ { x } ) ) <-> ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) |
| 57 | 56 | notbid | |- ( b = B -> ( -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) <-> -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) |
| 58 | 57 | ralbidv | |- ( b = B -> ( A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) <-> A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) |
| 59 | 58 | raleqbi1dv | |- ( b = B -> ( A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) <-> A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) |
| 60 | 53 59 | anbi12d | |- ( b = B -> ( ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) <-> ( ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
| 61 | 60 | elrab | |- ( B e. { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } <-> ( B e. ~P V /\ ( ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
| 62 | 3anass | |- ( ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) <-> ( B C_ V /\ ( ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
|
| 63 | 52 61 62 | 3bitr4i | |- ( B e. { b e. ~P V | ( ( N ` b ) = V /\ A. x e. b A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( b \ { x } ) ) ) } <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) |
| 64 | 50 63 | bitrdi | |- ( W e. X -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |