This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lbs | ⊢ LBasis = ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clbs | ⊢ LBasis | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vb | ⊢ 𝑏 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | clspn | ⊢ LSpan | |
| 9 | 5 8 | cfv | ⊢ ( LSpan ‘ 𝑤 ) |
| 10 | vn | ⊢ 𝑛 | |
| 11 | csca | ⊢ Scalar | |
| 12 | 5 11 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 13 | vs | ⊢ 𝑠 | |
| 14 | 10 | cv | ⊢ 𝑛 |
| 15 | 3 | cv | ⊢ 𝑏 |
| 16 | 15 14 | cfv | ⊢ ( 𝑛 ‘ 𝑏 ) |
| 17 | 16 6 | wceq | ⊢ ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) |
| 18 | vx | ⊢ 𝑥 | |
| 19 | vy | ⊢ 𝑦 | |
| 20 | 13 | cv | ⊢ 𝑠 |
| 21 | 20 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 22 | c0g | ⊢ 0g | |
| 23 | 20 22 | cfv | ⊢ ( 0g ‘ 𝑠 ) |
| 24 | 23 | csn | ⊢ { ( 0g ‘ 𝑠 ) } |
| 25 | 21 24 | cdif | ⊢ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) |
| 26 | 19 | cv | ⊢ 𝑦 |
| 27 | cvsca | ⊢ ·𝑠 | |
| 28 | 5 27 | cfv | ⊢ ( ·𝑠 ‘ 𝑤 ) |
| 29 | 18 | cv | ⊢ 𝑥 |
| 30 | 26 29 28 | co | ⊢ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) |
| 31 | 29 | csn | ⊢ { 𝑥 } |
| 32 | 15 31 | cdif | ⊢ ( 𝑏 ∖ { 𝑥 } ) |
| 33 | 32 14 | cfv | ⊢ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 34 | 30 33 | wcel | ⊢ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 35 | 34 | wn | ⊢ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 36 | 35 19 25 | wral | ⊢ ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 37 | 36 18 15 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 38 | 17 37 | wa | ⊢ ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 39 | 38 13 12 | wsbc | ⊢ [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 40 | 39 10 9 | wsbc | ⊢ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 41 | 40 3 7 | crab | ⊢ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } |
| 42 | 1 2 41 | cmpt | ⊢ ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| 43 | 0 42 | wceq | ⊢ LBasis = ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |