This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf . (Contributed by Thierry Arnoux, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ishashinf | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 2 | ficardom | ⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑛 ∈ ℕ → ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ) |
| 4 | isinf | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑎 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ) | |
| 5 | breq2 | ⊢ ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( 𝑥 ≈ 𝑎 ↔ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) ) |
| 7 | 6 | exbidv | ⊢ ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) ) |
| 8 | 7 | rspcva | ⊢ ( ( ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
| 9 | 3 4 8 | syl2anr | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
| 10 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 11 | 10 | biimpri | ⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
| 12 | 11 | a1i | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
| 13 | hasheni | ⊢ ( 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
| 15 | hashcard | ⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) | |
| 16 | 1 15 | syl | ⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
| 17 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 18 | hashfz1 | ⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
| 20 | 16 19 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = 𝑛 ) |
| 21 | 20 | ad2antlr | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = 𝑛 ) |
| 22 | 14 21 | eqtrd | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| 23 | 22 | ex | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) → ( ♯ ‘ 𝑥 ) = 𝑛 ) ) |
| 24 | 12 23 | anim12d | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) ) |
| 25 | 24 | eximdv | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) ) |
| 26 | 9 25 | mpd | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) |
| 27 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) | |
| 28 | 26 27 | sylibr | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| 29 | 28 | ralrimiva | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ) |