This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf . (Contributed by Thierry Arnoux, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ishashinf | |- ( -. A e. Fin -> A. n e. NN E. x e. ~P A ( # ` x ) = n ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( n e. NN -> ( 1 ... n ) e. Fin ) |
|
| 2 | ficardom | |- ( ( 1 ... n ) e. Fin -> ( card ` ( 1 ... n ) ) e. _om ) |
|
| 3 | 1 2 | syl | |- ( n e. NN -> ( card ` ( 1 ... n ) ) e. _om ) |
| 4 | isinf | |- ( -. A e. Fin -> A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) |
|
| 5 | breq2 | |- ( a = ( card ` ( 1 ... n ) ) -> ( x ~~ a <-> x ~~ ( card ` ( 1 ... n ) ) ) ) |
|
| 6 | 5 | anbi2d | |- ( a = ( card ` ( 1 ... n ) ) -> ( ( x C_ A /\ x ~~ a ) <-> ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) ) |
| 7 | 6 | exbidv | |- ( a = ( card ` ( 1 ... n ) ) -> ( E. x ( x C_ A /\ x ~~ a ) <-> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) ) |
| 8 | 7 | rspcva | |- ( ( ( card ` ( 1 ... n ) ) e. _om /\ A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) |
| 9 | 3 4 8 | syl2anr | |- ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) |
| 10 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 11 | 10 | biimpri | |- ( x C_ A -> x e. ~P A ) |
| 12 | 11 | a1i | |- ( ( -. A e. Fin /\ n e. NN ) -> ( x C_ A -> x e. ~P A ) ) |
| 13 | hasheni | |- ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) ) |
|
| 14 | 13 | adantl | |- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) ) |
| 15 | hashcard | |- ( ( 1 ... n ) e. Fin -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
|
| 16 | 1 15 | syl | |- ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
| 17 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 18 | hashfz1 | |- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
|
| 19 | 17 18 | syl | |- ( n e. NN -> ( # ` ( 1 ... n ) ) = n ) |
| 20 | 16 19 | eqtrd | |- ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = n ) |
| 21 | 20 | ad2antlr | |- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` ( card ` ( 1 ... n ) ) ) = n ) |
| 22 | 14 21 | eqtrd | |- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = n ) |
| 23 | 22 | ex | |- ( ( -. A e. Fin /\ n e. NN ) -> ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = n ) ) |
| 24 | 12 23 | anim12d | |- ( ( -. A e. Fin /\ n e. NN ) -> ( ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( x e. ~P A /\ ( # ` x ) = n ) ) ) |
| 25 | 24 | eximdv | |- ( ( -. A e. Fin /\ n e. NN ) -> ( E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) ) |
| 26 | 9 25 | mpd | |- ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) |
| 27 | df-rex | |- ( E. x e. ~P A ( # ` x ) = n <-> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) |
|
| 28 | 26 27 | sylibr | |- ( ( -. A e. Fin /\ n e. NN ) -> E. x e. ~P A ( # ` x ) = n ) |
| 29 | 28 | ralrimiva | |- ( -. A e. Fin -> A. n e. NN E. x e. ~P A ( # ` x ) = n ) |