This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a group operation." Note that X is the base set of the group. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isgrp.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | isgrpo | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrp.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | feq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) | |
| 3 | oveq | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝑔 𝑦 ) 𝐺 𝑧 ) ) | |
| 4 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
| 6 | 3 5 | eqtrd | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
| 7 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝑔 𝑧 ) ) ) | |
| 8 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝐺 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
| 10 | 7 9 | eqtrd | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
| 11 | 6 10 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 13 | 12 | 2ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 14 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑢 𝑔 𝑥 ) = ( 𝑢 𝐺 𝑥 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 16 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = 𝑢 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) |
| 18 | 17 | rexbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ↔ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ↔ ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 20 | 19 | rexralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 21 | 2 13 20 | 3anbi123d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) ↔ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 22 | 21 | exbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) ↔ ∃ 𝑡 ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 23 | df-grpo | ⊢ GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } | |
| 24 | 22 23 | elab2g | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ∃ 𝑡 ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 25 | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) | |
| 26 | 25 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 27 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑧 ) ) | |
| 28 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑧 ) = 𝑧 ) ) |
| 30 | eqcom | ⊢ ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ 𝑧 = ( 𝑢 𝐺 𝑧 ) ) | |
| 31 | 29 30 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ 𝑧 = ( 𝑢 𝐺 𝑧 ) ) ) |
| 32 | 31 | rspcv | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( 𝑢 𝐺 𝑥 ) = 𝑥 → 𝑧 = ( 𝑢 𝐺 𝑧 ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑢 𝐺 𝑦 ) = ( 𝑢 𝐺 𝑧 ) ) | |
| 34 | 33 | rspceeqv | ⊢ ( ( 𝑧 ∈ 𝑡 ∧ 𝑧 = ( 𝑢 𝐺 𝑧 ) ) → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) |
| 35 | 34 | ex | ⊢ ( 𝑧 ∈ 𝑡 → ( 𝑧 = ( 𝑢 𝐺 𝑧 ) → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
| 36 | 32 35 | syld | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
| 37 | 26 36 | syl5 | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
| 38 | 37 | reximdv | ⊢ ( 𝑧 ∈ 𝑡 → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ∧ 𝑧 ∈ 𝑡 ) → ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) |
| 40 | 39 | ralrimiva | ⊢ ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∀ 𝑧 ∈ 𝑡 ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) |
| 41 | 40 | anim2i | ⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑧 ∈ 𝑡 ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
| 42 | foov | ⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 ↔ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑧 ∈ 𝑡 ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) | |
| 43 | 41 42 | sylibr | ⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 ) |
| 44 | forn | ⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 → ran 𝐺 = 𝑡 ) | |
| 45 | 44 | eqcomd | ⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 → 𝑡 = ran 𝐺 ) |
| 46 | 43 45 | syl | ⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → 𝑡 = ran 𝐺 ) |
| 47 | 46 | 3adant2 | ⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → 𝑡 = ran 𝐺 ) |
| 48 | 47 | pm4.71ri | ⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 49 | 48 | exbii | ⊢ ( ∃ 𝑡 ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 50 | 24 49 | bitrdi | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) ) |
| 51 | rnexg | ⊢ ( 𝐺 ∈ 𝐴 → ran 𝐺 ∈ V ) | |
| 52 | 1 | eqeq2i | ⊢ ( 𝑡 = 𝑋 ↔ 𝑡 = ran 𝐺 ) |
| 53 | xpeq1 | ⊢ ( 𝑡 = 𝑋 → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑡 ) ) | |
| 54 | xpeq2 | ⊢ ( 𝑡 = 𝑋 → ( 𝑋 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) | |
| 55 | 53 54 | eqtrd | ⊢ ( 𝑡 = 𝑋 → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) |
| 56 | 55 | feq2d | ⊢ ( 𝑡 = 𝑋 → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑡 ) ) |
| 57 | feq3 | ⊢ ( 𝑡 = 𝑋 → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) | |
| 58 | 56 57 | bitrd | ⊢ ( 𝑡 = 𝑋 → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
| 59 | raleq | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | |
| 60 | 59 | raleqbi1dv | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 61 | 60 | raleqbi1dv | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 62 | rexeq | ⊢ ( 𝑡 = 𝑋 → ( ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) | |
| 63 | 62 | anbi2d | ⊢ ( 𝑡 = 𝑋 → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ↔ ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 64 | 63 | raleqbi1dv | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 65 | 64 | rexeqbi1dv | ⊢ ( 𝑡 = 𝑋 → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
| 66 | 58 61 65 | 3anbi123d | ⊢ ( 𝑡 = 𝑋 → ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 67 | 52 66 | sylbir | ⊢ ( 𝑡 = ran 𝐺 → ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 68 | 67 | ceqsexgv | ⊢ ( ran 𝐺 ∈ V → ( ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 69 | 51 68 | syl | ⊢ ( 𝐺 ∈ 𝐴 → ( ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
| 70 | 50 69 | bitrd | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |