This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of Herstein p. 54. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-grpo | ⊢ GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgr | ⊢ GrpOp | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | vt | ⊢ 𝑡 | |
| 3 | 1 | cv | ⊢ 𝑔 |
| 4 | 2 | cv | ⊢ 𝑡 |
| 5 | 4 4 | cxp | ⊢ ( 𝑡 × 𝑡 ) |
| 6 | 5 4 3 | wf | ⊢ 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 |
| 7 | vx | ⊢ 𝑥 | |
| 8 | vy | ⊢ 𝑦 | |
| 9 | vz | ⊢ 𝑧 | |
| 10 | 7 | cv | ⊢ 𝑥 |
| 11 | 8 | cv | ⊢ 𝑦 |
| 12 | 10 11 3 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 13 | 9 | cv | ⊢ 𝑧 |
| 14 | 12 13 3 | co | ⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) |
| 15 | 11 13 3 | co | ⊢ ( 𝑦 𝑔 𝑧 ) |
| 16 | 10 15 3 | co | ⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 17 | 14 16 | wceq | ⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 18 | 17 9 4 | wral | ⊢ ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 19 | 18 8 4 | wral | ⊢ ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 20 | 19 7 4 | wral | ⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 21 | vu | ⊢ 𝑢 | |
| 22 | 21 | cv | ⊢ 𝑢 |
| 23 | 22 10 3 | co | ⊢ ( 𝑢 𝑔 𝑥 ) |
| 24 | 23 10 | wceq | ⊢ ( 𝑢 𝑔 𝑥 ) = 𝑥 |
| 25 | 11 10 3 | co | ⊢ ( 𝑦 𝑔 𝑥 ) |
| 26 | 25 22 | wceq | ⊢ ( 𝑦 𝑔 𝑥 ) = 𝑢 |
| 27 | 26 8 4 | wrex | ⊢ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 |
| 28 | 24 27 | wa | ⊢ ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
| 29 | 28 7 4 | wral | ⊢ ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
| 30 | 29 21 4 | wrex | ⊢ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
| 31 | 6 20 30 | w3a | ⊢ ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) |
| 32 | 31 2 | wex | ⊢ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) |
| 33 | 32 1 | cab | ⊢ { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |
| 34 | 0 33 | wceq | ⊢ GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |