This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fil | ⊢ Fil = ( 𝑧 ∈ V ↦ { 𝑓 ∈ ( fBas ‘ 𝑧 ) ∣ ∀ 𝑥 ∈ 𝒫 𝑧 ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝑓 ) } ) | |
| 2 | pweq | ⊢ ( 𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑓 = 𝐹 ) → 𝒫 𝑧 = 𝒫 𝑋 ) |
| 4 | ineq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∩ 𝒫 𝑥 ) = ( 𝐹 ∩ 𝒫 𝑥 ) ) | |
| 5 | 4 | neeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ) ) |
| 6 | eleq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ 𝑓 ↔ 𝑥 ∈ 𝐹 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝑓 ) ↔ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝑓 ) ↔ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |
| 9 | 3 8 | raleqbidv | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑧 ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝑓 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑧 = 𝑋 → ( fBas ‘ 𝑧 ) = ( fBas ‘ 𝑋 ) ) | |
| 11 | fvex | ⊢ ( fBas ‘ 𝑧 ) ∈ V | |
| 12 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 13 | 1 9 10 11 12 | elmptrab2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |