This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfild . (Contributed by Mario Carneiro, 1-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfild.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) | |
| isfild.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | isfildlem | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfild.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) | |
| 2 | isfild.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | elex | ⊢ ( 𝐵 ∈ 𝐹 → 𝐵 ∈ V ) | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝐹 → 𝐵 ∈ V ) ) |
| 5 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ∈ V ) | |
| 6 | 5 | expcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ V ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ V ) ) |
| 8 | 7 | adantrd | ⊢ ( 𝜑 → ( ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) → 𝐵 ∈ V ) ) |
| 9 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹 ) ) | |
| 10 | sseq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 11 | dfsbcq | ⊢ ( 𝑦 = 𝐵 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑥 ] 𝜓 ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) |
| 13 | 9 12 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) ) |
| 15 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 16 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐹 | |
| 17 | nfv | ⊢ Ⅎ 𝑥 𝑦 ⊆ 𝐴 | |
| 18 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 | |
| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 20 | 16 19 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 21 | 15 20 | nfim | ⊢ Ⅎ 𝑥 ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 22 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐹 ↔ 𝑦 ∈ 𝐹 ) ) | |
| 23 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 24 | sbceq1a | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 26 | 22 25 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ) ) |
| 28 | 21 27 1 | chvarfv | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 29 | 14 28 | vtoclg | ⊢ ( 𝐵 ∈ V → ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) |
| 30 | 29 | com12 | ⊢ ( 𝜑 → ( 𝐵 ∈ V → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) ) |
| 31 | 4 8 30 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝐹 ↔ ( 𝐵 ⊆ 𝐴 ∧ [ 𝐵 / 𝑥 ] 𝜓 ) ) ) |