This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff the regular elements are the nonzero elements. Compare isdomn2 , domnrrg . (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn6.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn6.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | ||
| isdomn6.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isdomn6 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn6.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn6.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 3 | isdomn6.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 3 | isdomn2 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| 5 | 2 1 | rrgss | ⊢ 𝐸 ⊆ 𝐵 |
| 6 | 5 | a1i | ⊢ ( 𝑅 ∈ NzRing → 𝐸 ⊆ 𝐵 ) |
| 7 | 2 3 | rrgnz | ⊢ ( 𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸 ) |
| 8 | ssdifsn | ⊢ ( 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐸 ⊆ 𝐵 ∧ ¬ 0 ∈ 𝐸 ) ) | |
| 9 | 6 7 8 | sylanbrc | ⊢ ( 𝑅 ∈ NzRing → 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) ) |
| 10 | sssseq | ⊢ ( 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) → ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑅 ∈ NzRing → ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |
| 12 | 11 | pm5.32i | ⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |
| 13 | 4 12 | bitri | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |