This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgnz.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| rrgnz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rrgnz | ⊢ ( 𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgnz.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | rrgnz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 3 2 | nzrnz | ⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 5 | 4 | neneqd | ⊢ ( 𝑅 ∈ NzRing → ¬ ( 1r ‘ 𝑅 ) = 0 ) |
| 6 | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ NzRing ∧ 0 ∈ 𝐸 ) → 𝑅 ∈ Ring ) |
| 8 | simpr | ⊢ ( ( 𝑅 ∈ NzRing ∧ 0 ∈ 𝐸 ) → 0 ∈ 𝐸 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 10 | 9 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 7 10 | syl | ⊢ ( ( 𝑅 ∈ NzRing ∧ 0 ∈ 𝐸 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 13 | 9 12 2 7 11 | ringlzd | ⊢ ( ( 𝑅 ∈ NzRing ∧ 0 ∈ 𝐸 ) → ( 0 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) |
| 14 | 1 9 12 2 | rrgeq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ↔ ( 1r ‘ 𝑅 ) = 0 ) ) |
| 15 | 14 | biimpa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ∧ ( 0 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) → ( 1r ‘ 𝑅 ) = 0 ) |
| 16 | 7 8 11 13 15 | syl31anc | ⊢ ( ( 𝑅 ∈ NzRing ∧ 0 ∈ 𝐸 ) → ( 1r ‘ 𝑅 ) = 0 ) |
| 17 | 5 16 | mtand | ⊢ ( 𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸 ) |