This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn2.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | ||
| isdomn2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | domnrrg | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn2.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 3 | isdomn2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 3 | isdomn2 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝑅 ∈ Domn → ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
| 7 | simp2 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simp3 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 9 | eldifsn | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) | |
| 10 | 7 8 9 | sylanbrc | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 11 | 6 10 | sseldd | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸 ) |