This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff the regular elements are the nonzero elements. Compare isdomn2 , domnrrg . (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn6.b | |- B = ( Base ` R ) |
|
| isdomn6.t | |- E = ( RLReg ` R ) |
||
| isdomn6.z | |- .0. = ( 0g ` R ) |
||
| Assertion | isdomn6 | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn6.b | |- B = ( Base ` R ) |
|
| 2 | isdomn6.t | |- E = ( RLReg ` R ) |
|
| 3 | isdomn6.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 2 3 | isdomn2 | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| 5 | 2 1 | rrgss | |- E C_ B |
| 6 | 5 | a1i | |- ( R e. NzRing -> E C_ B ) |
| 7 | 2 3 | rrgnz | |- ( R e. NzRing -> -. .0. e. E ) |
| 8 | ssdifsn | |- ( E C_ ( B \ { .0. } ) <-> ( E C_ B /\ -. .0. e. E ) ) |
|
| 9 | 6 7 8 | sylanbrc | |- ( R e. NzRing -> E C_ ( B \ { .0. } ) ) |
| 10 | sssseq | |- ( E C_ ( B \ { .0. } ) -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) |
|
| 11 | 9 10 | syl | |- ( R e. NzRing -> ( ( B \ { .0. } ) C_ E <-> ( B \ { .0. } ) = E ) ) |
| 12 | 11 | pm5.32i | |- ( ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |
| 13 | 4 12 | bitri | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) = E ) ) |