This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015) (Proof shortened by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn2.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | ||
| isdomn2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isdomn2 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn2.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 3 | isdomn2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 1 4 3 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 6 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) | |
| 7 | 2 1 4 3 | isrrg | ⊢ ( 𝑥 ∈ 𝐸 ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 8 | 7 | baib | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐸 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑥 ∈ 𝐸 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 10 | 9 | ralbiia | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) |
| 11 | dfss3 | ⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ) | |
| 12 | isdomn5 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) | |
| 13 | 10 11 12 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| 15 | 5 14 | bitri | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |