This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn3.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn3.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| isdomn3.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | isdomn3 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ Ring ∧ ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn3.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn3.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | isdomn3.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 1 4 2 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 6 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 7 | 6 2 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 9 | anass | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ Ring ∧ ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ Ring ∧ ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) ) |
| 11 | 1 6 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 12 | eldifsn | ⊢ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) ) | |
| 13 | 12 | baibr | ⊢ ( ( 1r ‘ 𝑅 ) ∈ 𝐵 → ( ( 1r ‘ 𝑅 ) ≠ 0 ↔ ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ≠ 0 ↔ ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 15 | 1 4 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 16 | 15 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 17 | 16 | biantrurd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ) ) |
| 18 | eldifsn | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ) | |
| 19 | 17 18 | bitr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ↔ ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 21 | 20 | 2ralbidva | ⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 22 | con34b | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) | |
| 23 | neanior | ⊢ ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ↔ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) | |
| 24 | df-ne | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ↔ ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) | |
| 25 | 23 24 | imbi12i | ⊢ ( ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ↔ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
| 26 | 22 25 | bitr4i | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ) |
| 27 | 26 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 0 ) ) |
| 28 | impexp | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) | |
| 29 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) ) | |
| 30 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) | |
| 31 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) | |
| 32 | 30 31 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) ) |
| 33 | 29 32 | bitr4i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ) ↔ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 34 | 33 | imbi1i | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ↔ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 35 | 28 34 | bitr3i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ↔ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 36 | 35 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 37 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) | |
| 38 | r2al | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) | |
| 39 | 36 37 38 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 40 | 21 27 39 | 3bitr4g | ⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 41 | 14 40 | anbi12d | ⊢ ( 𝑅 ∈ Ring → ( ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 42 | 3 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ Mnd ) |
| 43 | 3 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 44 | 3 6 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑈 ) |
| 45 | 3 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑈 ) |
| 46 | 43 44 45 | issubm | ⊢ ( 𝑈 ∈ Mnd → ( ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ↔ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 47 | 3anass | ⊢ ( ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ↔ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 ∧ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) | |
| 48 | 46 47 | bitrdi | ⊢ ( 𝑈 ∈ Mnd → ( ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ↔ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 ∧ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) ) |
| 49 | difss | ⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 | |
| 50 | 49 | biantrur | ⊢ ( ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ↔ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 ∧ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 51 | 48 50 | bitr4di | ⊢ ( 𝑈 ∈ Mnd → ( ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ↔ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 52 | 42 51 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ↔ ( ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) ) ) |
| 53 | 41 52 | bitr4d | ⊢ ( 𝑅 ∈ Ring → ( ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ) ) |
| 54 | 53 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ) ) |
| 55 | 10 54 | bitri | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ) ) |
| 56 | 5 55 | bitri | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ Ring ∧ ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑈 ) ) ) |