This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff the regular elements are the nonzero elements. Compare isdomn2 , domnrrg . (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn6.b | ||
| isdomn6.t | |||
| isdomn6.z | |||
| Assertion | isdomn6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn6.b | ||
| 2 | isdomn6.t | ||
| 3 | isdomn6.z | ||
| 4 | 1 2 3 | isdomn2 | |
| 5 | 2 1 | rrgss | |
| 6 | 5 | a1i | |
| 7 | 2 3 | rrgnz | |
| 8 | ssdifsn | ||
| 9 | 6 7 8 | sylanbrc | |
| 10 | sssseq | ||
| 11 | 9 10 | syl | |
| 12 | 11 | pm5.32i | |
| 13 | 4 12 | bitri |