This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn3.b | |- B = ( Base ` R ) |
|
| isdomn3.z | |- .0. = ( 0g ` R ) |
||
| isdomn3.u | |- U = ( mulGrp ` R ) |
||
| Assertion | isdomn3 | |- ( R e. Domn <-> ( R e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn3.b | |- B = ( Base ` R ) |
|
| 2 | isdomn3.z | |- .0. = ( 0g ` R ) |
|
| 3 | isdomn3.u | |- U = ( mulGrp ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | 1 4 2 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | 6 2 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= .0. ) ) |
| 8 | 7 | anbi1i | |- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( ( R e. Ring /\ ( 1r ` R ) =/= .0. ) /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 9 | anass | |- ( ( ( R e. Ring /\ ( 1r ` R ) =/= .0. ) /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. Ring /\ ( ( 1r ` R ) =/= .0. /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
|
| 10 | 8 9 | bitri | |- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. Ring /\ ( ( 1r ` R ) =/= .0. /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
| 11 | 1 6 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 12 | eldifsn | |- ( ( 1r ` R ) e. ( B \ { .0. } ) <-> ( ( 1r ` R ) e. B /\ ( 1r ` R ) =/= .0. ) ) |
|
| 13 | 12 | baibr | |- ( ( 1r ` R ) e. B -> ( ( 1r ` R ) =/= .0. <-> ( 1r ` R ) e. ( B \ { .0. } ) ) ) |
| 14 | 11 13 | syl | |- ( R e. Ring -> ( ( 1r ` R ) =/= .0. <-> ( 1r ` R ) e. ( B \ { .0. } ) ) ) |
| 15 | 1 4 | ringcl | |- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( x ( .r ` R ) y ) e. B ) |
| 16 | 15 | 3expb | |- ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` R ) y ) e. B ) |
| 17 | 16 | biantrurd | |- ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( ( x ( .r ` R ) y ) =/= .0. <-> ( ( x ( .r ` R ) y ) e. B /\ ( x ( .r ` R ) y ) =/= .0. ) ) ) |
| 18 | eldifsn | |- ( ( x ( .r ` R ) y ) e. ( B \ { .0. } ) <-> ( ( x ( .r ` R ) y ) e. B /\ ( x ( .r ` R ) y ) =/= .0. ) ) |
|
| 19 | 17 18 | bitr4di | |- ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( ( x ( .r ` R ) y ) =/= .0. <-> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
| 20 | 19 | imbi2d | |- ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) =/= .0. ) <-> ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 21 | 20 | 2ralbidva | |- ( R e. Ring -> ( A. x e. B A. y e. B ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) =/= .0. ) <-> A. x e. B A. y e. B ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 22 | con34b | |- ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) |
|
| 23 | neanior | |- ( ( x =/= .0. /\ y =/= .0. ) <-> -. ( x = .0. \/ y = .0. ) ) |
|
| 24 | df-ne | |- ( ( x ( .r ` R ) y ) =/= .0. <-> -. ( x ( .r ` R ) y ) = .0. ) |
|
| 25 | 23 24 | imbi12i | |- ( ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) =/= .0. ) <-> ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) |
| 26 | 22 25 | bitr4i | |- ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) =/= .0. ) ) |
| 27 | 26 | 2ralbii | |- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. B A. y e. B ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) =/= .0. ) ) |
| 28 | impexp | |- ( ( ( ( x e. B /\ y e. B ) /\ ( x =/= .0. /\ y =/= .0. ) ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) <-> ( ( x e. B /\ y e. B ) -> ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
|
| 29 | an4 | |- ( ( ( x e. B /\ y e. B ) /\ ( x =/= .0. /\ y =/= .0. ) ) <-> ( ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) ) |
|
| 30 | eldifsn | |- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
|
| 31 | eldifsn | |- ( y e. ( B \ { .0. } ) <-> ( y e. B /\ y =/= .0. ) ) |
|
| 32 | 30 31 | anbi12i | |- ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) <-> ( ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) ) |
| 33 | 29 32 | bitr4i | |- ( ( ( x e. B /\ y e. B ) /\ ( x =/= .0. /\ y =/= .0. ) ) <-> ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) |
| 34 | 33 | imbi1i | |- ( ( ( ( x e. B /\ y e. B ) /\ ( x =/= .0. /\ y =/= .0. ) ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) <-> ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
| 35 | 28 34 | bitr3i | |- ( ( ( x e. B /\ y e. B ) -> ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) <-> ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
| 36 | 35 | 2albii | |- ( A. x A. y ( ( x e. B /\ y e. B ) -> ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) <-> A. x A. y ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
| 37 | r2al | |- ( A. x e. B A. y e. B ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) <-> A. x A. y ( ( x e. B /\ y e. B ) -> ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
|
| 38 | r2al | |- ( A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) <-> A. x A. y ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
|
| 39 | 36 37 38 | 3bitr4ri | |- ( A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) <-> A. x e. B A. y e. B ( ( x =/= .0. /\ y =/= .0. ) -> ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
| 40 | 21 27 39 | 3bitr4g | |- ( R e. Ring -> ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) |
| 41 | 14 40 | anbi12d | |- ( R e. Ring -> ( ( ( 1r ` R ) =/= .0. /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 42 | 3 | ringmgp | |- ( R e. Ring -> U e. Mnd ) |
| 43 | 3 1 | mgpbas | |- B = ( Base ` U ) |
| 44 | 3 6 | ringidval | |- ( 1r ` R ) = ( 0g ` U ) |
| 45 | 3 4 | mgpplusg | |- ( .r ` R ) = ( +g ` U ) |
| 46 | 43 44 45 | issubm | |- ( U e. Mnd -> ( ( B \ { .0. } ) e. ( SubMnd ` U ) <-> ( ( B \ { .0. } ) C_ B /\ ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 47 | 3anass | |- ( ( ( B \ { .0. } ) C_ B /\ ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) <-> ( ( B \ { .0. } ) C_ B /\ ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
|
| 48 | 46 47 | bitrdi | |- ( U e. Mnd -> ( ( B \ { .0. } ) e. ( SubMnd ` U ) <-> ( ( B \ { .0. } ) C_ B /\ ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) ) |
| 49 | difss | |- ( B \ { .0. } ) C_ B |
|
| 50 | 49 | biantrur | |- ( ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) <-> ( ( B \ { .0. } ) C_ B /\ ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 51 | 48 50 | bitr4di | |- ( U e. Mnd -> ( ( B \ { .0. } ) e. ( SubMnd ` U ) <-> ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 52 | 42 51 | syl | |- ( R e. Ring -> ( ( B \ { .0. } ) e. ( SubMnd ` U ) <-> ( ( 1r ` R ) e. ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( x ( .r ` R ) y ) e. ( B \ { .0. } ) ) ) ) |
| 53 | 41 52 | bitr4d | |- ( R e. Ring -> ( ( ( 1r ` R ) =/= .0. /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( B \ { .0. } ) e. ( SubMnd ` U ) ) ) |
| 54 | 53 | pm5.32i | |- ( ( R e. Ring /\ ( ( 1r ` R ) =/= .0. /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) <-> ( R e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` U ) ) ) |
| 55 | 10 54 | bitri | |- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` U ) ) ) |
| 56 | 5 55 | bitri | |- ( R e. Domn <-> ( R e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` U ) ) ) |