This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of nonnegative integer powers of an element A of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubmcmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cycsubmcmn.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubmcmn.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | ||
| cycsubmcmn.c | ⊢ 𝐶 = ran 𝐹 | ||
| Assertion | cycsubmcmn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s 𝐶 ) ∈ CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubmcmn.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubmcmn.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | cycsubmcmn.c | ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1 2 3 4 | cycsubm | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 𝐺 ↾s 𝐶 ) = ( 𝐺 ↾s 𝐶 ) | |
| 8 | 1 6 7 | issubm2 | ⊢ ( 𝐺 ∈ Mnd → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) ) ) |
| 10 | simp3 | ⊢ ( ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) → ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) | |
| 11 | 9 10 | biimtrdi | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) ) |
| 12 | 5 11 | mpd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) |
| 13 | 7 | submbas | ⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → 𝐶 = ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) |
| 14 | 5 13 | syl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 = ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) = 𝐶 ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 17 | 15 | eleq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ↔ 𝑦 ∈ 𝐶 ) ) |
| 18 | 16 17 | anbi12d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 19 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 20 | 1 2 3 4 19 | cycsubmcom | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 21 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 22 | 7 19 | ressplusg | ⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) ) |
| 23 | 22 | eqcomd | ⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) = ( +g ‘ 𝐺 ) ) |
| 24 | 23 | oveqd | ⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 25 | 23 | oveqd | ⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 26 | 24 25 | eqeq12d | ⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 27 | 21 26 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 28 | 20 27 | mpbird | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) ) |
| 30 | 18 29 | sylbid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) ) |
| 31 | 30 | ralrimivv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) |
| 32 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) | |
| 33 | eqid | ⊢ ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) = ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) | |
| 34 | 32 33 | iscmn | ⊢ ( ( 𝐺 ↾s 𝐶 ) ∈ CMnd ↔ ( ( 𝐺 ↾s 𝐶 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) ) |
| 35 | 12 31 34 | sylanbrc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s 𝐶 ) ∈ CMnd ) |