This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| Assertion | iscyg2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 4 | 1 2 | iscyg | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 5 | 3 | neeq1i | ⊢ ( 𝐸 ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
| 6 | rabn0 | ⊢ ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐸 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 9 | 4 8 | bitr4i | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) ) |