This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| cyggenod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | cyggenod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 4 | cyggenod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 5 | 1 2 3 | iscyggen | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 6 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → 𝐵 ∈ Fin ) | |
| 7 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → 𝐺 ∈ Grp ) | |
| 8 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 9 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 12 | 11 | fmpttd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) : ℤ ⟶ 𝐵 ) |
| 13 | 12 | frnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) |
| 14 | 6 13 | ssfid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin ) |
| 15 | hashen | ⊢ ( ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) = ( ♯ ‘ 𝐵 ) ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ) ) | |
| 16 | 14 6 15 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) = ( ♯ ‘ 𝐵 ) ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ) ) |
| 17 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) | |
| 18 | 1 4 2 17 | dfod2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ 𝑋 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ 𝑋 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) ) |
| 20 | 14 | iftrued | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) = ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) |
| 21 | 19 20 | eqtr2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) = ( 𝑂 ‘ 𝑋 ) ) |
| 22 | 21 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) = ( ♯ ‘ 𝐵 ) ↔ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) |
| 23 | fisseneq | ⊢ ( ( 𝐵 ∈ Fin ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) | |
| 24 | 23 | 3expia | ⊢ ( ( 𝐵 ∈ Fin ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 25 | enrefg | ⊢ ( 𝐵 ∈ Fin → 𝐵 ≈ 𝐵 ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐵 ∈ Fin ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) → 𝐵 ≈ 𝐵 ) |
| 27 | breq1 | ⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ↔ 𝐵 ≈ 𝐵 ) ) | |
| 28 | 26 27 | syl5ibrcom | ⊢ ( ( 𝐵 ∈ Fin ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ) ) |
| 29 | 24 28 | impbid | ⊢ ( ( 𝐵 ∈ Fin ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 30 | 6 13 29 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ≈ 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 31 | 16 22 30 | 3bitr3rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) ∧ 𝑋 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) |
| 32 | 31 | pm5.32da | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
| 33 | 5 32 | bitrid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |