This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isacs1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∈ ( ACS ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ⊆ 𝒫 𝑋 | |
| 2 | 1 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ⊆ 𝒫 𝑋 ) |
| 3 | pweq | ⊢ ( 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) → 𝒫 𝑠 = 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ) | |
| 4 | 3 | ineq1d | ⊢ ( 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) |
| 5 | 4 | imaeq2d | ⊢ ( 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) → ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ) |
| 6 | 5 | unieqd | ⊢ ( 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) → ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ) |
| 7 | id | ⊢ ( 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) → 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) ) | |
| 8 | 6 7 | sseq12d | ⊢ ( 𝑠 = ( 𝑋 ∩ ∩ 𝑡 ) → ( ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ↔ ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ( 𝑋 ∩ ∩ 𝑡 ) ) ) |
| 9 | inss1 | ⊢ ( 𝑋 ∩ ∩ 𝑡 ) ⊆ 𝑋 | |
| 10 | elpw2g | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∩ ∩ 𝑡 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∩ ∩ 𝑡 ) ⊆ 𝑋 ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∩ ∩ 𝑡 ) ∈ 𝒫 𝑋 ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) → ( 𝑋 ∩ ∩ 𝑡 ) ∈ 𝒫 𝑋 ) |
| 13 | imassrn | ⊢ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ran 𝐹 | |
| 14 | frn | ⊢ ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → ran 𝐹 ⊆ 𝒫 𝑋 ) |
| 16 | 13 15 | sstrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ 𝒫 𝑋 ) |
| 17 | 16 | unissd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ∪ 𝒫 𝑋 ) |
| 18 | unipw | ⊢ ∪ 𝒫 𝑋 = 𝑋 | |
| 19 | 17 18 | sseqtrdi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ 𝑋 ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ 𝑋 ) |
| 21 | inss2 | ⊢ ( 𝑋 ∩ ∩ 𝑡 ) ⊆ ∩ 𝑡 | |
| 22 | intss1 | ⊢ ( 𝑎 ∈ 𝑡 → ∩ 𝑡 ⊆ 𝑎 ) | |
| 23 | 21 22 | sstrid | ⊢ ( 𝑎 ∈ 𝑡 → ( 𝑋 ∩ ∩ 𝑡 ) ⊆ 𝑎 ) |
| 24 | 23 | adantl | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → ( 𝑋 ∩ ∩ 𝑡 ) ⊆ 𝑎 ) |
| 25 | 24 | sspwd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ⊆ 𝒫 𝑎 ) |
| 26 | 25 | ssrind | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ⊆ ( 𝒫 𝑎 ∩ Fin ) ) |
| 27 | imass2 | ⊢ ( ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ⊆ ( 𝒫 𝑎 ∩ Fin ) → ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ) |
| 29 | 28 | unissd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ) |
| 30 | ssel2 | ⊢ ( ( 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∧ 𝑎 ∈ 𝑡 ) → 𝑎 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) | |
| 31 | pweq | ⊢ ( 𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎 ) | |
| 32 | 31 | ineq1d | ⊢ ( 𝑠 = 𝑎 → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 𝑎 ∩ Fin ) ) |
| 33 | 32 | imaeq2d | ⊢ ( 𝑠 = 𝑎 → ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ) |
| 34 | 33 | unieqd | ⊢ ( 𝑠 = 𝑎 → ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ) |
| 35 | id | ⊢ ( 𝑠 = 𝑎 → 𝑠 = 𝑎 ) | |
| 36 | 34 35 | sseq12d | ⊢ ( 𝑠 = 𝑎 → ( ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ↔ ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ) ) |
| 37 | 36 | elrab | ⊢ ( 𝑎 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ( 𝑎 ∈ 𝒫 𝑋 ∧ ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ) ) |
| 38 | 37 | simprbi | ⊢ ( 𝑎 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } → ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ) |
| 39 | 30 38 | syl | ⊢ ( ( 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∧ 𝑎 ∈ 𝑡 ) → ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ) |
| 40 | 39 | adantll | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → ∪ ( 𝐹 “ ( 𝒫 𝑎 ∩ Fin ) ) ⊆ 𝑎 ) |
| 41 | 29 40 | sstrd | ⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) ∧ 𝑎 ∈ 𝑡 ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ 𝑎 ) |
| 42 | 41 | ralrimiva | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) → ∀ 𝑎 ∈ 𝑡 ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ 𝑎 ) |
| 43 | ssint | ⊢ ( ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ∩ 𝑡 ↔ ∀ 𝑎 ∈ 𝑡 ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ 𝑎 ) | |
| 44 | 42 43 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ∩ 𝑡 ) |
| 45 | 20 44 | ssind | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) → ∪ ( 𝐹 “ ( 𝒫 ( 𝑋 ∩ ∩ 𝑡 ) ∩ Fin ) ) ⊆ ( 𝑋 ∩ ∩ 𝑡 ) ) |
| 46 | 8 12 45 | elrabd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ∧ 𝑡 ⊆ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) → ( 𝑋 ∩ ∩ 𝑡 ) ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ) |
| 47 | 2 46 | ismred2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∈ ( Moore ‘ 𝑋 ) ) |
| 48 | fssxp | ⊢ ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → 𝐹 ⊆ ( 𝒫 𝑋 × 𝒫 𝑋 ) ) | |
| 49 | pwexg | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V ) | |
| 50 | 49 49 | xpexd | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 × 𝒫 𝑋 ) ∈ V ) |
| 51 | ssexg | ⊢ ( ( 𝐹 ⊆ ( 𝒫 𝑋 × 𝒫 𝑋 ) ∧ ( 𝒫 𝑋 × 𝒫 𝑋 ) ∈ V ) → 𝐹 ∈ V ) | |
| 52 | 48 50 51 | syl2anr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → 𝐹 ∈ V ) |
| 53 | simpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) | |
| 54 | pweq | ⊢ ( 𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡 ) | |
| 55 | 54 | ineq1d | ⊢ ( 𝑠 = 𝑡 → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 𝑡 ∩ Fin ) ) |
| 56 | 55 | imaeq2d | ⊢ ( 𝑠 = 𝑡 → ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) |
| 57 | 56 | unieqd | ⊢ ( 𝑠 = 𝑡 → ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) |
| 58 | id | ⊢ ( 𝑠 = 𝑡 → 𝑠 = 𝑡 ) | |
| 59 | 57 58 | sseq12d | ⊢ ( 𝑠 = 𝑡 → ( ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) |
| 60 | 59 | elrab3 | ⊢ ( 𝑡 ∈ 𝒫 𝑋 → ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) |
| 61 | 60 | rgen | ⊢ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) |
| 62 | 53 61 | jctir | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) |
| 63 | feq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ↔ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ) | |
| 64 | imaeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) = ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) | |
| 65 | 64 | unieqd | ⊢ ( 𝑓 = 𝐹 → ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) |
| 66 | 65 | sseq1d | ⊢ ( 𝑓 = 𝐹 → ( ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) |
| 67 | 66 | bibi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ↔ ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) |
| 68 | 67 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) |
| 69 | 63 68 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) ) |
| 70 | 52 62 69 | spcedv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) |
| 71 | isacs | ⊢ ( { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∈ ( ACS ‘ 𝑋 ) ↔ ( { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) ) | |
| 72 | 47 70 71 | sylanbrc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) → { 𝑠 ∈ 𝒫 𝑋 ∣ ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 } ∈ ( ACS ‘ 𝑋 ) ) |