This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isacs1i | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( ACS ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } C_ ~P X |
|
| 2 | 1 | a1i | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } C_ ~P X ) |
| 3 | pweq | |- ( s = ( X i^i |^| t ) -> ~P s = ~P ( X i^i |^| t ) ) |
|
| 4 | 3 | ineq1d | |- ( s = ( X i^i |^| t ) -> ( ~P s i^i Fin ) = ( ~P ( X i^i |^| t ) i^i Fin ) ) |
| 5 | 4 | imaeq2d | |- ( s = ( X i^i |^| t ) -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) ) |
| 6 | 5 | unieqd | |- ( s = ( X i^i |^| t ) -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) ) |
| 7 | id | |- ( s = ( X i^i |^| t ) -> s = ( X i^i |^| t ) ) |
|
| 8 | 6 7 | sseq12d | |- ( s = ( X i^i |^| t ) -> ( U. ( F " ( ~P s i^i Fin ) ) C_ s <-> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( X i^i |^| t ) ) ) |
| 9 | inss1 | |- ( X i^i |^| t ) C_ X |
|
| 10 | elpw2g | |- ( X e. V -> ( ( X i^i |^| t ) e. ~P X <-> ( X i^i |^| t ) C_ X ) ) |
|
| 11 | 9 10 | mpbiri | |- ( X e. V -> ( X i^i |^| t ) e. ~P X ) |
| 12 | 11 | ad2antrr | |- ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> ( X i^i |^| t ) e. ~P X ) |
| 13 | imassrn | |- ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ran F |
|
| 14 | frn | |- ( F : ~P X --> ~P X -> ran F C_ ~P X ) |
|
| 15 | 14 | adantl | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> ran F C_ ~P X ) |
| 16 | 13 15 | sstrid | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ~P X ) |
| 17 | 16 | unissd | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ U. ~P X ) |
| 18 | unipw | |- U. ~P X = X |
|
| 19 | 17 18 | sseqtrdi | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ X ) |
| 20 | 19 | adantr | |- ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ X ) |
| 21 | inss2 | |- ( X i^i |^| t ) C_ |^| t |
|
| 22 | intss1 | |- ( a e. t -> |^| t C_ a ) |
|
| 23 | 21 22 | sstrid | |- ( a e. t -> ( X i^i |^| t ) C_ a ) |
| 24 | 23 | adantl | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ( X i^i |^| t ) C_ a ) |
| 25 | 24 | sspwd | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ~P ( X i^i |^| t ) C_ ~P a ) |
| 26 | 25 | ssrind | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ( ~P ( X i^i |^| t ) i^i Fin ) C_ ( ~P a i^i Fin ) ) |
| 27 | imass2 | |- ( ( ~P ( X i^i |^| t ) i^i Fin ) C_ ( ~P a i^i Fin ) -> ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( F " ( ~P a i^i Fin ) ) ) |
|
| 28 | 26 27 | syl | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( F " ( ~P a i^i Fin ) ) ) |
| 29 | 28 | unissd | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ U. ( F " ( ~P a i^i Fin ) ) ) |
| 30 | ssel2 | |- ( ( t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } /\ a e. t ) -> a e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) |
|
| 31 | pweq | |- ( s = a -> ~P s = ~P a ) |
|
| 32 | 31 | ineq1d | |- ( s = a -> ( ~P s i^i Fin ) = ( ~P a i^i Fin ) ) |
| 33 | 32 | imaeq2d | |- ( s = a -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P a i^i Fin ) ) ) |
| 34 | 33 | unieqd | |- ( s = a -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P a i^i Fin ) ) ) |
| 35 | id | |- ( s = a -> s = a ) |
|
| 36 | 34 35 | sseq12d | |- ( s = a -> ( U. ( F " ( ~P s i^i Fin ) ) C_ s <-> U. ( F " ( ~P a i^i Fin ) ) C_ a ) ) |
| 37 | 36 | elrab | |- ( a e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> ( a e. ~P X /\ U. ( F " ( ~P a i^i Fin ) ) C_ a ) ) |
| 38 | 37 | simprbi | |- ( a e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } -> U. ( F " ( ~P a i^i Fin ) ) C_ a ) |
| 39 | 30 38 | syl | |- ( ( t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } /\ a e. t ) -> U. ( F " ( ~P a i^i Fin ) ) C_ a ) |
| 40 | 39 | adantll | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> U. ( F " ( ~P a i^i Fin ) ) C_ a ) |
| 41 | 29 40 | sstrd | |- ( ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) /\ a e. t ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ a ) |
| 42 | 41 | ralrimiva | |- ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> A. a e. t U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ a ) |
| 43 | ssint | |- ( U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ |^| t <-> A. a e. t U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ a ) |
|
| 44 | 42 43 | sylibr | |- ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ |^| t ) |
| 45 | 20 44 | ssind | |- ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> U. ( F " ( ~P ( X i^i |^| t ) i^i Fin ) ) C_ ( X i^i |^| t ) ) |
| 46 | 8 12 45 | elrabd | |- ( ( ( X e. V /\ F : ~P X --> ~P X ) /\ t C_ { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) -> ( X i^i |^| t ) e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } ) |
| 47 | 2 46 | ismred2 | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( Moore ` X ) ) |
| 48 | fssxp | |- ( F : ~P X --> ~P X -> F C_ ( ~P X X. ~P X ) ) |
|
| 49 | pwexg | |- ( X e. V -> ~P X e. _V ) |
|
| 50 | 49 49 | xpexd | |- ( X e. V -> ( ~P X X. ~P X ) e. _V ) |
| 51 | ssexg | |- ( ( F C_ ( ~P X X. ~P X ) /\ ( ~P X X. ~P X ) e. _V ) -> F e. _V ) |
|
| 52 | 48 50 51 | syl2anr | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> F e. _V ) |
| 53 | simpr | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> F : ~P X --> ~P X ) |
|
| 54 | pweq | |- ( s = t -> ~P s = ~P t ) |
|
| 55 | 54 | ineq1d | |- ( s = t -> ( ~P s i^i Fin ) = ( ~P t i^i Fin ) ) |
| 56 | 55 | imaeq2d | |- ( s = t -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P t i^i Fin ) ) ) |
| 57 | 56 | unieqd | |- ( s = t -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P t i^i Fin ) ) ) |
| 58 | id | |- ( s = t -> s = t ) |
|
| 59 | 57 58 | sseq12d | |- ( s = t -> ( U. ( F " ( ~P s i^i Fin ) ) C_ s <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) |
| 60 | 59 | elrab3 | |- ( t e. ~P X -> ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) |
| 61 | 60 | rgen | |- A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) |
| 62 | 53 61 | jctir | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> ( F : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) |
| 63 | feq1 | |- ( f = F -> ( f : ~P X --> ~P X <-> F : ~P X --> ~P X ) ) |
|
| 64 | imaeq1 | |- ( f = F -> ( f " ( ~P t i^i Fin ) ) = ( F " ( ~P t i^i Fin ) ) ) |
|
| 65 | 64 | unieqd | |- ( f = F -> U. ( f " ( ~P t i^i Fin ) ) = U. ( F " ( ~P t i^i Fin ) ) ) |
| 66 | 65 | sseq1d | |- ( f = F -> ( U. ( f " ( ~P t i^i Fin ) ) C_ t <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) |
| 67 | 66 | bibi2d | |- ( f = F -> ( ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) <-> ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) |
| 68 | 67 | ralbidv | |- ( f = F -> ( A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) <-> A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) |
| 69 | 63 68 | anbi12d | |- ( f = F -> ( ( f : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) ) <-> ( F : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( F " ( ~P t i^i Fin ) ) C_ t ) ) ) ) |
| 70 | 52 62 69 | spcedv | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> E. f ( f : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) ) ) |
| 71 | isacs | |- ( { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( ACS ` X ) <-> ( { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. t e. ~P X ( t e. { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } <-> U. ( f " ( ~P t i^i Fin ) ) C_ t ) ) ) ) |
|
| 72 | 47 70 71 | sylanbrc | |- ( ( X e. V /\ F : ~P X --> ~P X ) -> { s e. ~P X | U. ( F " ( ~P s i^i Fin ) ) C_ s } e. ( ACS ` X ) ) |