This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| irredrmul.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| irredrmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | irredrmul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 2 | irredrmul.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | irredrmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐼 ) | |
| 5 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) | |
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) | |
| 7 | eqid | ⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) | |
| 8 | 2 7 | unitdvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 · 𝑌 ) ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ) |
| 9 | 8 | 3com23 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ ( 𝑋 · 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ) |
| 10 | 9 | 3expia | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ) ) |
| 11 | 5 6 10 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 1 12 | irredcl | ⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 12 2 7 3 | dvrcan3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) = 𝑋 ) |
| 16 | 5 14 6 15 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) = 𝑋 ) |
| 17 | 16 | eleq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
| 18 | 11 17 | sylibd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 19 | 5 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → 𝑅 ∈ Ring ) |
| 20 | eldifi | ⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 21 | 20 | ad2antrl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 22 | 6 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → 𝑌 ∈ 𝑈 ) |
| 23 | 12 2 7 | dvrcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 | 19 21 22 23 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 | eldifn | ⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) → ¬ 𝑦 ∈ 𝑈 ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ¬ 𝑦 ∈ 𝑈 ) |
| 27 | 2 3 | unitmulcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) ∈ 𝑈 ) |
| 28 | 27 | 3com23 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) ∈ 𝑈 ) |
| 29 | 28 | 3expia | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) ∈ 𝑈 ) ) |
| 30 | 19 22 29 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) ∈ 𝑈 ) ) |
| 31 | 12 2 7 3 | dvrcan1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) = 𝑦 ) |
| 32 | 19 21 22 31 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) = 𝑦 ) |
| 33 | 32 | eleq1d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) · 𝑌 ) ∈ 𝑈 ↔ 𝑦 ∈ 𝑈 ) ) |
| 34 | 30 33 | sylibd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 → 𝑦 ∈ 𝑈 ) ) |
| 35 | 26 34 | mtod | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ¬ ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ 𝑈 ) |
| 36 | 24 35 | eldifd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) |
| 37 | simprr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
| 38 | 37 | oveq1d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( 𝑥 · 𝑦 ) ( /r ‘ 𝑅 ) 𝑌 ) = ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) ) |
| 39 | eldifi | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 40 | 39 | ad2antlr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 41 | 12 2 7 3 | dvrass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑥 · 𝑦 ) ( /r ‘ 𝑅 ) 𝑌 ) = ( 𝑥 · ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ) ) |
| 42 | 19 40 21 22 41 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( 𝑥 · 𝑦 ) ( /r ‘ 𝑅 ) 𝑌 ) = ( 𝑥 · ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ) ) |
| 43 | 16 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( ( 𝑋 · 𝑌 ) ( /r ‘ 𝑅 ) 𝑌 ) = 𝑋 ) |
| 44 | 38 42 43 | 3eqtr3d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ( 𝑥 · ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ) = 𝑋 ) |
| 45 | oveq2 | ⊢ ( 𝑧 = ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) → ( 𝑥 · 𝑧 ) = ( 𝑥 · ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ) ) | |
| 46 | 45 | eqeq1d | ⊢ ( 𝑧 = ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) → ( ( 𝑥 · 𝑧 ) = 𝑋 ↔ ( 𝑥 · ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ) = 𝑋 ) ) |
| 47 | 46 | rspcev | ⊢ ( ( ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · ( 𝑦 ( /r ‘ 𝑅 ) 𝑌 ) ) = 𝑋 ) → ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) |
| 48 | 36 44 47 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∧ ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) → ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) |
| 49 | 48 | rexlimdvaa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ) → ( ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) ) |
| 50 | 49 | reximdva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) ) |
| 51 | 18 50 | orim12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) → ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) ) ) |
| 52 | 12 2 | unitcl | ⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
| 53 | 52 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
| 54 | 12 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑅 ) ) |
| 55 | 5 14 53 54 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑅 ) ) |
| 56 | eqid | ⊢ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) = ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) | |
| 57 | 12 2 1 56 3 | isnirred | ⊢ ( ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑅 ) → ( ¬ ( 𝑋 · 𝑌 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) ) |
| 58 | 55 57 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ¬ ( 𝑋 · 𝑌 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) ) |
| 59 | 12 2 1 56 3 | isnirred | ⊢ ( 𝑋 ∈ ( Base ‘ 𝑅 ) → ( ¬ 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) ) ) |
| 60 | 14 59 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ¬ 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ∃ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ 𝑈 ) ( 𝑥 · 𝑧 ) = 𝑋 ) ) ) |
| 61 | 51 58 60 | 3imtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( ¬ ( 𝑋 · 𝑌 ) ∈ 𝐼 → ¬ 𝑋 ∈ 𝐼 ) ) |
| 62 | 4 61 | mt4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 ) |