This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irred.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| irred.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| irred.3 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | ||
| irred.4 | ⊢ 𝑁 = ( 𝐵 ∖ 𝑈 ) | ||
| irred.5 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isnirred | ⊢ ( 𝑋 ∈ 𝐵 → ( ¬ 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irred.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | irred.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | irred.3 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 4 | irred.4 | ⊢ 𝑁 = ( 𝐵 ∖ 𝑈 ) | |
| 5 | irred.5 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | 4 | eleq2i | ⊢ ( 𝑋 ∈ 𝑁 ↔ 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ) |
| 7 | eldif | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝑋 ∈ 𝑁 ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ) ) |
| 9 | 8 | baibr | ⊢ ( 𝑋 ∈ 𝐵 → ( ¬ 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ 𝑁 ) ) |
| 10 | df-ne | ⊢ ( ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ¬ ( 𝑥 · 𝑦 ) = 𝑋 ) | |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ∀ 𝑦 ∈ 𝑁 ¬ ( 𝑥 · 𝑦 ) = 𝑋 ) |
| 12 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝑁 ¬ ( 𝑥 · 𝑦 ) = 𝑋 ↔ ¬ ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) | |
| 13 | 11 12 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ¬ ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ∀ 𝑥 ∈ 𝑁 ¬ ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) |
| 15 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝑁 ¬ ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ↔ ¬ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) | |
| 16 | 14 15 | bitr2i | ⊢ ( ¬ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) |
| 17 | 16 | a1i | ⊢ ( 𝑋 ∈ 𝐵 → ( ¬ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| 18 | 9 17 | anbi12d | ⊢ ( 𝑋 ∈ 𝐵 → ( ( ¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) ↔ ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) ) |
| 19 | ioran | ⊢ ( ¬ ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) ↔ ( ¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) ) | |
| 20 | 1 2 3 4 5 | isirred | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| 21 | 18 19 20 | 3bitr4g | ⊢ ( 𝑋 ∈ 𝐵 → ( ¬ ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) ↔ 𝑋 ∈ 𝐼 ) ) |
| 22 | 21 | con1bid | ⊢ ( 𝑋 ∈ 𝐵 → ( ¬ 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑈 ∨ ∃ 𝑥 ∈ 𝑁 ∃ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) = 𝑋 ) ) ) |