This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative law for division. ( divass analog.) (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrass.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrass.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| dvrass.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvrass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( 𝑋 · ( 𝑌 / 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrass.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvrass.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 4 | dvrass.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) | |
| 6 | simpr1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simpr2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) | |
| 8 | simpr3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑍 ∈ 𝑈 ) | |
| 9 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 10 | 2 9 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 11 | 5 8 10 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 12 | 1 4 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 𝑋 · ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 13 | 5 6 7 11 12 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 𝑋 · ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 14 | 1 4 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 15 | 14 | 3adant3r3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 16 | 1 4 2 9 3 | dvrval | ⊢ ( ( ( 𝑋 · 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 17 | 15 8 16 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 18 | 1 4 2 9 3 | dvrval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑌 / 𝑍 ) = ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 19 | 7 8 18 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑌 / 𝑍 ) = ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 · ( 𝑌 / 𝑍 ) ) = ( 𝑋 · ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 21 | 13 17 20 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( 𝑋 · ( 𝑌 / 𝑍 ) ) ) |