This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitdvcl.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitdvcl.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| Assertion | unitdvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitdvcl.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitdvcl.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 1 | unitcl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 7 | 3 5 1 6 2 | dvrval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 10 | 1 6 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) |
| 12 | 1 5 | unitmulcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ∈ 𝑈 ) |
| 13 | 11 12 | syld3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ∈ 𝑈 ) |
| 14 | 9 13 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝑈 ) |