This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reipcl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| reipcl.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| Assertion | ipge0 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝐴 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reipcl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | reipcl.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | cphngp | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) | |
| 4 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 5 | 1 4 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 6 | sqge0d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) ) |
| 8 | 1 2 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 9 | 7 8 | breqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝐴 , 𝐴 ) ) |