This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| cphtcphnm.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| Assertion | cphtcphnm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | cphtcphnm.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 5 | 3 4 2 | cphnmfval | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 6 | cphlmod | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) | |
| 7 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 8 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 9 | 1 8 3 4 | tchnmfval | ⊢ ( 𝑊 ∈ Grp → ( norm ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 10 | 6 7 9 | 3syl | ⊢ ( 𝑊 ∈ ℂPreHil → ( norm ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 11 | 5 10 | eqtr4d | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ 𝐺 ) ) |