This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a union U. A with a class B is equal to the union of the intersections of each element of A with B . (Contributed by FL, 24-Mar-2007) (Proof shortened by Wolf Lammen, 15-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inuni | ⊢ ( ∪ 𝐴 ∩ 𝐵 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ) | |
| 2 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ) |
| 5 | eluniab | ⊢ ( 𝑧 ∈ ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) } ↔ ∃ 𝑥 ( 𝑧 ∈ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) ) ) | |
| 6 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) | |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ) |
| 8 | elin | ⊢ ( 𝑧 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ↔ ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 9 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝑧 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 11 | inex1 | ⊢ ( 𝑦 ∩ 𝐵 ) ∈ V |
| 13 | eleq2 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝐵 ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝑦 ∩ 𝐵 ) ) ) | |
| 14 | 12 13 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ↔ 𝑧 ∈ ( 𝑦 ∩ 𝐵 ) ) |
| 15 | elin | ⊢ ( 𝑧 ∈ ( 𝑦 ∩ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵 ) ) |
| 18 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ) | |
| 19 | 10 17 18 | 3bitr2i | ⊢ ( 𝑧 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝑥 = ( 𝑦 ∩ 𝐵 ) ∧ 𝑧 ∈ 𝑥 ) ) |
| 20 | 4 5 19 | 3bitr4ri | ⊢ ( 𝑧 ∈ ( ∪ 𝐴 ∩ 𝐵 ) ↔ 𝑧 ∈ ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) } ) |
| 21 | 20 | eqriv | ⊢ ( ∪ 𝐴 ∩ 𝐵 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 ∩ 𝐵 ) } |