This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow is not used by the proof. When ax-pow is assumed and A is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if A is a set (see pwexr ). (Contributed by NM, 22-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpweq | ⊢ ( 𝒫 𝐴 ∈ V ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwidg | ⊢ ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 ) | |
| 2 | pweq | ⊢ ( 𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴 ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑥 = 𝒫 𝐴 → ( 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 ) ) |
| 4 | 3 | spcegv | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ) ) |
| 5 | 1 4 | mpd | ⊢ ( 𝒫 𝐴 ∈ V → ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ) |
| 6 | elex | ⊢ ( 𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V ) | |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V ) |
| 8 | 5 7 | impbii | ⊢ ( 𝒫 𝐴 ∈ V ↔ ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | 9 | elpw2 | ⊢ ( 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ⊆ 𝑥 ) |
| 11 | pwss | ⊢ ( 𝒫 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥 ) ) | |
| 12 | df-ss | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) ) | |
| 13 | 12 | imbi1i | ⊢ ( ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥 ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| 14 | 13 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| 15 | 11 14 | bitri | ⊢ ( 𝒫 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| 16 | 10 15 | bitri | ⊢ ( 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
| 18 | 8 17 | bitri | ⊢ ( 𝒫 𝐴 ∈ V ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |