This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrre | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) = inf ( A , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A C_ RR ) |
|
| 2 | ressxr | |- RR C_ RR* |
|
| 3 | 1 2 | sstrdi | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A C_ RR* ) |
| 4 | infxrcl | |- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
|
| 5 | 3 4 | syl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) e. RR* ) |
| 6 | infrecl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR ) |
|
| 7 | 6 | rexrd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR* ) |
| 8 | 5 | xrleidd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) <_ inf ( A , RR* , < ) ) |
| 9 | infxrgelb | |- ( ( A C_ RR* /\ inf ( A , RR* , < ) e. RR* ) -> ( inf ( A , RR* , < ) <_ inf ( A , RR* , < ) <-> A. x e. A inf ( A , RR* , < ) <_ x ) ) |
|
| 10 | 3 5 9 | syl2anc | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( inf ( A , RR* , < ) <_ inf ( A , RR* , < ) <-> A. x e. A inf ( A , RR* , < ) <_ x ) ) |
| 11 | simp2 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A =/= (/) ) |
|
| 12 | n0 | |- ( A =/= (/) <-> E. z z e. A ) |
|
| 13 | 11 12 | sylib | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. z z e. A ) |
| 14 | 5 | adantr | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ z e. A ) -> inf ( A , RR* , < ) e. RR* ) |
| 15 | 1 | sselda | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ z e. A ) -> z e. RR ) |
| 16 | mnfxr | |- -oo e. RR* |
|
| 17 | 16 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -oo e. RR* ) |
| 18 | 6 | mnfltd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -oo < inf ( A , RR , < ) ) |
| 19 | 6 | leidd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) <_ inf ( A , RR , < ) ) |
| 20 | infregelb | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ inf ( A , RR , < ) e. RR ) -> ( inf ( A , RR , < ) <_ inf ( A , RR , < ) <-> A. x e. A inf ( A , RR , < ) <_ x ) ) |
|
| 21 | 6 20 | mpdan | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( inf ( A , RR , < ) <_ inf ( A , RR , < ) <-> A. x e. A inf ( A , RR , < ) <_ x ) ) |
| 22 | infxrgelb | |- ( ( A C_ RR* /\ inf ( A , RR , < ) e. RR* ) -> ( inf ( A , RR , < ) <_ inf ( A , RR* , < ) <-> A. x e. A inf ( A , RR , < ) <_ x ) ) |
|
| 23 | 3 7 22 | syl2anc | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( inf ( A , RR , < ) <_ inf ( A , RR* , < ) <-> A. x e. A inf ( A , RR , < ) <_ x ) ) |
| 24 | 21 23 | bitr4d | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( inf ( A , RR , < ) <_ inf ( A , RR , < ) <-> inf ( A , RR , < ) <_ inf ( A , RR* , < ) ) ) |
| 25 | 19 24 | mpbid | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) <_ inf ( A , RR* , < ) ) |
| 26 | 17 7 5 18 25 | xrltletrd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -oo < inf ( A , RR* , < ) ) |
| 27 | 26 | adantr | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ z e. A ) -> -oo < inf ( A , RR* , < ) ) |
| 28 | infxrlb | |- ( ( A C_ RR* /\ z e. A ) -> inf ( A , RR* , < ) <_ z ) |
|
| 29 | 3 28 | sylan | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ z e. A ) -> inf ( A , RR* , < ) <_ z ) |
| 30 | xrre | |- ( ( ( inf ( A , RR* , < ) e. RR* /\ z e. RR ) /\ ( -oo < inf ( A , RR* , < ) /\ inf ( A , RR* , < ) <_ z ) ) -> inf ( A , RR* , < ) e. RR ) |
|
| 31 | 14 15 27 29 30 | syl22anc | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ z e. A ) -> inf ( A , RR* , < ) e. RR ) |
| 32 | 13 31 | exlimddv | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) e. RR ) |
| 33 | infregelb | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ inf ( A , RR* , < ) e. RR ) -> ( inf ( A , RR* , < ) <_ inf ( A , RR , < ) <-> A. x e. A inf ( A , RR* , < ) <_ x ) ) |
|
| 34 | 32 33 | mpdan | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( inf ( A , RR* , < ) <_ inf ( A , RR , < ) <-> A. x e. A inf ( A , RR* , < ) <_ x ) ) |
| 35 | 10 34 | bitr4d | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( inf ( A , RR* , < ) <_ inf ( A , RR* , < ) <-> inf ( A , RR* , < ) <_ inf ( A , RR , < ) ) ) |
| 36 | 8 35 | mpbid | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) <_ inf ( A , RR , < ) ) |
| 37 | 5 7 36 25 | xrletrid | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) = inf ( A , RR , < ) ) |