This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of TakeutiZaring p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infensuc | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onprc | ⊢ ¬ On ∈ V | |
| 2 | eleq1 | ⊢ ( ω = On → ( ω ∈ V ↔ On ∈ V ) ) | |
| 3 | 1 2 | mtbiri | ⊢ ( ω = On → ¬ ω ∈ V ) |
| 4 | ssexg | ⊢ ( ( ω ⊆ 𝐴 ∧ 𝐴 ∈ On ) → ω ∈ V ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ω ∈ V ) |
| 6 | 3 5 | nsyl3 | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ¬ ω = On ) |
| 7 | omon | ⊢ ( ω ∈ On ∨ ω = On ) | |
| 8 | 7 | ori | ⊢ ( ¬ ω ∈ On → ω = On ) |
| 9 | 6 8 | nsyl2 | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ω ∈ On ) |
| 10 | id | ⊢ ( 𝑥 = ω → 𝑥 = ω ) | |
| 11 | suceq | ⊢ ( 𝑥 = ω → suc 𝑥 = suc ω ) | |
| 12 | 10 11 | breq12d | ⊢ ( 𝑥 = ω → ( 𝑥 ≈ suc 𝑥 ↔ ω ≈ suc ω ) ) |
| 13 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 14 | suceq | ⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ suc 𝑥 ↔ 𝑦 ≈ suc 𝑦 ) ) |
| 16 | id | ⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) | |
| 17 | suceq | ⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) | |
| 18 | 16 17 | breq12d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦 ) ) |
| 19 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 20 | suceq | ⊢ ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 ) | |
| 21 | 19 20 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ suc 𝑥 ↔ 𝐴 ≈ suc 𝐴 ) ) |
| 22 | limom | ⊢ Lim ω | |
| 23 | 22 | limensuci | ⊢ ( ω ∈ On → ω ≈ suc ω ) |
| 24 | vex | ⊢ 𝑦 ∈ V | |
| 25 | 24 | sucex | ⊢ suc 𝑦 ∈ V |
| 26 | en2sn | ⊢ ( ( 𝑦 ∈ V ∧ suc 𝑦 ∈ V ) → { 𝑦 } ≈ { suc 𝑦 } ) | |
| 27 | 24 25 26 | mp2an | ⊢ { 𝑦 } ≈ { suc 𝑦 } |
| 28 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 29 | ordirr | ⊢ ( Ord 𝑦 → ¬ 𝑦 ∈ 𝑦 ) | |
| 30 | 28 29 | syl | ⊢ ( 𝑦 ∈ On → ¬ 𝑦 ∈ 𝑦 ) |
| 31 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑦 ) | |
| 32 | 30 31 | sylibr | ⊢ ( 𝑦 ∈ On → ( 𝑦 ∩ { 𝑦 } ) = ∅ ) |
| 33 | eloni | ⊢ ( suc 𝑦 ∈ On → Ord suc 𝑦 ) | |
| 34 | ordirr | ⊢ ( Ord suc 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦 ) | |
| 35 | 33 34 | syl | ⊢ ( suc 𝑦 ∈ On → ¬ suc 𝑦 ∈ suc 𝑦 ) |
| 36 | onsucb | ⊢ ( 𝑦 ∈ On ↔ suc 𝑦 ∈ On ) | |
| 37 | disjsn | ⊢ ( ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ↔ ¬ suc 𝑦 ∈ suc 𝑦 ) | |
| 38 | 35 36 37 | 3imtr4i | ⊢ ( 𝑦 ∈ On → ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) |
| 39 | 32 38 | jca | ⊢ ( 𝑦 ∈ On → ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) ) |
| 40 | unen | ⊢ ( ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) ∧ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) ) → ( 𝑦 ∪ { 𝑦 } ) ≈ ( suc 𝑦 ∪ { suc 𝑦 } ) ) | |
| 41 | df-suc | ⊢ suc 𝑦 = ( 𝑦 ∪ { 𝑦 } ) | |
| 42 | df-suc | ⊢ suc suc 𝑦 = ( suc 𝑦 ∪ { suc 𝑦 } ) | |
| 43 | 40 41 42 | 3brtr4g | ⊢ ( ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) ∧ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) ) → suc 𝑦 ≈ suc suc 𝑦 ) |
| 44 | 43 | ex | ⊢ ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) → ( ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) → suc 𝑦 ≈ suc suc 𝑦 ) ) |
| 45 | 39 44 | syl5 | ⊢ ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) → ( 𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦 ) ) |
| 46 | 27 45 | mpan2 | ⊢ ( 𝑦 ≈ suc 𝑦 → ( 𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦 ) ) |
| 47 | 46 | com12 | ⊢ ( 𝑦 ∈ On → ( 𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦 ) ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ On ∧ ω ∈ On ) ∧ ω ⊆ 𝑦 ) → ( 𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦 ) ) |
| 49 | vex | ⊢ 𝑥 ∈ V | |
| 50 | limensuc | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ≈ suc 𝑥 ) | |
| 51 | 49 50 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ≈ suc 𝑥 ) |
| 52 | 51 | ad2antrr | ⊢ ( ( ( Lim 𝑥 ∧ ω ∈ On ) ∧ ω ⊆ 𝑥 ) → 𝑥 ≈ suc 𝑥 ) |
| 53 | 52 | a1d | ⊢ ( ( ( Lim 𝑥 ∧ ω ∈ On ) ∧ ω ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ω ⊆ 𝑦 → 𝑦 ≈ suc 𝑦 ) → 𝑥 ≈ suc 𝑥 ) ) |
| 54 | 12 15 18 21 23 48 53 | tfindsg | ⊢ ( ( ( 𝐴 ∈ On ∧ ω ∈ On ) ∧ ω ⊆ 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |
| 55 | 54 | exp31 | ⊢ ( 𝐴 ∈ On → ( ω ∈ On → ( ω ⊆ 𝐴 → 𝐴 ≈ suc 𝐴 ) ) ) |
| 56 | 55 | com23 | ⊢ ( 𝐴 ∈ On → ( ω ⊆ 𝐴 → ( ω ∈ On → 𝐴 ≈ suc 𝐴 ) ) ) |
| 57 | 56 | imp | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( ω ∈ On → 𝐴 ≈ suc 𝐴 ) ) |
| 58 | 9 57 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |