This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of TakeutiZaring p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infensuc | |- ( ( A e. On /\ _om C_ A ) -> A ~~ suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onprc | |- -. On e. _V |
|
| 2 | eleq1 | |- ( _om = On -> ( _om e. _V <-> On e. _V ) ) |
|
| 3 | 1 2 | mtbiri | |- ( _om = On -> -. _om e. _V ) |
| 4 | ssexg | |- ( ( _om C_ A /\ A e. On ) -> _om e. _V ) |
|
| 5 | 4 | ancoms | |- ( ( A e. On /\ _om C_ A ) -> _om e. _V ) |
| 6 | 3 5 | nsyl3 | |- ( ( A e. On /\ _om C_ A ) -> -. _om = On ) |
| 7 | omon | |- ( _om e. On \/ _om = On ) |
|
| 8 | 7 | ori | |- ( -. _om e. On -> _om = On ) |
| 9 | 6 8 | nsyl2 | |- ( ( A e. On /\ _om C_ A ) -> _om e. On ) |
| 10 | id | |- ( x = _om -> x = _om ) |
|
| 11 | suceq | |- ( x = _om -> suc x = suc _om ) |
|
| 12 | 10 11 | breq12d | |- ( x = _om -> ( x ~~ suc x <-> _om ~~ suc _om ) ) |
| 13 | id | |- ( x = y -> x = y ) |
|
| 14 | suceq | |- ( x = y -> suc x = suc y ) |
|
| 15 | 13 14 | breq12d | |- ( x = y -> ( x ~~ suc x <-> y ~~ suc y ) ) |
| 16 | id | |- ( x = suc y -> x = suc y ) |
|
| 17 | suceq | |- ( x = suc y -> suc x = suc suc y ) |
|
| 18 | 16 17 | breq12d | |- ( x = suc y -> ( x ~~ suc x <-> suc y ~~ suc suc y ) ) |
| 19 | id | |- ( x = A -> x = A ) |
|
| 20 | suceq | |- ( x = A -> suc x = suc A ) |
|
| 21 | 19 20 | breq12d | |- ( x = A -> ( x ~~ suc x <-> A ~~ suc A ) ) |
| 22 | limom | |- Lim _om |
|
| 23 | 22 | limensuci | |- ( _om e. On -> _om ~~ suc _om ) |
| 24 | vex | |- y e. _V |
|
| 25 | 24 | sucex | |- suc y e. _V |
| 26 | en2sn | |- ( ( y e. _V /\ suc y e. _V ) -> { y } ~~ { suc y } ) |
|
| 27 | 24 25 26 | mp2an | |- { y } ~~ { suc y } |
| 28 | eloni | |- ( y e. On -> Ord y ) |
|
| 29 | ordirr | |- ( Ord y -> -. y e. y ) |
|
| 30 | 28 29 | syl | |- ( y e. On -> -. y e. y ) |
| 31 | disjsn | |- ( ( y i^i { y } ) = (/) <-> -. y e. y ) |
|
| 32 | 30 31 | sylibr | |- ( y e. On -> ( y i^i { y } ) = (/) ) |
| 33 | eloni | |- ( suc y e. On -> Ord suc y ) |
|
| 34 | ordirr | |- ( Ord suc y -> -. suc y e. suc y ) |
|
| 35 | 33 34 | syl | |- ( suc y e. On -> -. suc y e. suc y ) |
| 36 | onsucb | |- ( y e. On <-> suc y e. On ) |
|
| 37 | disjsn | |- ( ( suc y i^i { suc y } ) = (/) <-> -. suc y e. suc y ) |
|
| 38 | 35 36 37 | 3imtr4i | |- ( y e. On -> ( suc y i^i { suc y } ) = (/) ) |
| 39 | 32 38 | jca | |- ( y e. On -> ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) ) |
| 40 | unen | |- ( ( ( y ~~ suc y /\ { y } ~~ { suc y } ) /\ ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) ) -> ( y u. { y } ) ~~ ( suc y u. { suc y } ) ) |
|
| 41 | df-suc | |- suc y = ( y u. { y } ) |
|
| 42 | df-suc | |- suc suc y = ( suc y u. { suc y } ) |
|
| 43 | 40 41 42 | 3brtr4g | |- ( ( ( y ~~ suc y /\ { y } ~~ { suc y } ) /\ ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) ) -> suc y ~~ suc suc y ) |
| 44 | 43 | ex | |- ( ( y ~~ suc y /\ { y } ~~ { suc y } ) -> ( ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) -> suc y ~~ suc suc y ) ) |
| 45 | 39 44 | syl5 | |- ( ( y ~~ suc y /\ { y } ~~ { suc y } ) -> ( y e. On -> suc y ~~ suc suc y ) ) |
| 46 | 27 45 | mpan2 | |- ( y ~~ suc y -> ( y e. On -> suc y ~~ suc suc y ) ) |
| 47 | 46 | com12 | |- ( y e. On -> ( y ~~ suc y -> suc y ~~ suc suc y ) ) |
| 48 | 47 | ad2antrr | |- ( ( ( y e. On /\ _om e. On ) /\ _om C_ y ) -> ( y ~~ suc y -> suc y ~~ suc suc y ) ) |
| 49 | vex | |- x e. _V |
|
| 50 | limensuc | |- ( ( x e. _V /\ Lim x ) -> x ~~ suc x ) |
|
| 51 | 49 50 | mpan | |- ( Lim x -> x ~~ suc x ) |
| 52 | 51 | ad2antrr | |- ( ( ( Lim x /\ _om e. On ) /\ _om C_ x ) -> x ~~ suc x ) |
| 53 | 52 | a1d | |- ( ( ( Lim x /\ _om e. On ) /\ _om C_ x ) -> ( A. y e. x ( _om C_ y -> y ~~ suc y ) -> x ~~ suc x ) ) |
| 54 | 12 15 18 21 23 48 53 | tfindsg | |- ( ( ( A e. On /\ _om e. On ) /\ _om C_ A ) -> A ~~ suc A ) |
| 55 | 54 | exp31 | |- ( A e. On -> ( _om e. On -> ( _om C_ A -> A ~~ suc A ) ) ) |
| 56 | 55 | com23 | |- ( A e. On -> ( _om C_ A -> ( _om e. On -> A ~~ suc A ) ) ) |
| 57 | 56 | imp | |- ( ( A e. On /\ _om C_ A ) -> ( _om e. On -> A ~~ suc A ) ) |
| 58 | 9 57 | mpd | |- ( ( A e. On /\ _om C_ A ) -> A ~~ suc A ) |