This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of _om implies our axiom of infinity ax-inf . The proof shows that the especially contrived class " ` ran ( rec ( ( v e.V |-> suc v ) , x ) |`om ) " exists, is a subset of its union, and contains a given set x (and thus is nonempty). Thus, it provides an example demonstrating that a set y exists with the necessary properties demanded by ax-inf . (Contributed by NM, 15-Oct-1996) Revised to closed form. (Revised by BJ, 20-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inf0 | ⊢ ( ω ∈ 𝑉 → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr0g | ⊢ ( 𝑥 ∈ V → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) = 𝑥 ) | |
| 2 | 1 | elv | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) = 𝑥 |
| 3 | frfnom | ⊢ ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω | |
| 4 | peano1 | ⊢ ∅ ∈ ω | |
| 5 | fnfvelrn | ⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
| 7 | 2 6 | eqeltrri | ⊢ 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
| 8 | fvelrnb | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω → ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ↔ ∃ 𝑓 ∈ ω ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 ) ) | |
| 9 | 3 8 | ax-mp | ⊢ ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ↔ ∃ 𝑓 ∈ ω ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 ) |
| 10 | fvex | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ V | |
| 11 | 10 | sucid | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) |
| 12 | 10 | sucex | ⊢ suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ V |
| 13 | eqid | ⊢ ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) = ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) | |
| 14 | suceq | ⊢ ( 𝑧 = 𝑣 → suc 𝑧 = suc 𝑣 ) | |
| 15 | suceq | ⊢ ( 𝑧 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) → suc 𝑧 = suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ) | |
| 16 | 13 14 15 | frsucmpt2 | ⊢ ( ( 𝑓 ∈ ω ∧ suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ V ) → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) = suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ) |
| 17 | 12 16 | mpan2 | ⊢ ( 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) = suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ) |
| 18 | 11 17 | eleqtrrid | ⊢ ( 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) |
| 19 | eleq1 | ⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ↔ 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) ) | |
| 20 | 18 19 | imbitrid | ⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ( 𝑓 ∈ ω → 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) ) |
| 21 | peano2b | ⊢ ( 𝑓 ∈ ω ↔ suc 𝑓 ∈ ω ) | |
| 22 | fnfvelrn | ⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω ∧ suc 𝑓 ∈ ω ) → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) | |
| 23 | 3 22 | mpan | ⊢ ( suc 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
| 24 | 21 23 | sylbi | ⊢ ( 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
| 25 | 20 24 | jca2 | ⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ( 𝑓 ∈ ω → ( 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∧ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
| 26 | fvex | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ V | |
| 27 | eleq2 | ⊢ ( 𝑤 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) ) | |
| 28 | eleq1 | ⊢ ( 𝑤 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) → ( 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ↔ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑤 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ↔ ( 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∧ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
| 30 | 26 29 | spcev | ⊢ ( ( 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∧ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
| 31 | 25 30 | syl6com | ⊢ ( 𝑓 ∈ ω → ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
| 32 | 31 | rexlimiv | ⊢ ( ∃ 𝑓 ∈ ω ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
| 33 | 9 32 | sylbi | ⊢ ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
| 34 | 33 | ax-gen | ⊢ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
| 35 | fndm | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω → dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) = ω ) | |
| 36 | 3 35 | ax-mp | ⊢ dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) = ω |
| 37 | id | ⊢ ( ω ∈ 𝑉 → ω ∈ 𝑉 ) | |
| 38 | 36 37 | eqeltrid | ⊢ ( ω ∈ 𝑉 → dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ 𝑉 ) |
| 39 | fnfun | ⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω → Fun ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) | |
| 40 | 3 39 | ax-mp | ⊢ Fun ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
| 41 | funrnex | ⊢ ( dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ 𝑉 → ( Fun ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ V ) ) | |
| 42 | 38 40 41 | mpisyl | ⊢ ( ω ∈ 𝑉 → ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ V ) |
| 43 | eleq2 | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) | |
| 44 | eleq2 | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) | |
| 45 | eleq2 | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) | |
| 46 | 45 | anbi2d | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
| 47 | 46 | exbidv | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
| 48 | 44 47 | imbi12d | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ↔ ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) ) |
| 49 | 48 | albidv | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) ) |
| 50 | 43 49 | anbi12d | ⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∧ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) ) ) |
| 51 | 50 | spcegv | ⊢ ( ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ V → ( ( 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∧ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) ) |
| 52 | 42 51 | syl | ⊢ ( ω ∈ 𝑉 → ( ( 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∧ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) ) |
| 53 | 7 34 52 | mp2ani | ⊢ ( ω ∈ 𝑉 → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |