This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of Axiom of Infinity (using zfinf as a hypothesis). Axiom of Infinity in FreydScedrov p. 283. (Contributed by NM, 14-Oct-1996) (Revised by David Abernethy, 1-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | inf1.1 | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) | |
| Assertion | inf1 | ⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf1.1 | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) | |
| 2 | ne0i | ⊢ ( 𝑦 ∈ 𝑥 → 𝑥 ≠ ∅ ) | |
| 3 | 2 | anim1i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) → ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 4 | 1 3 | eximii | ⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |