This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If for every element of an indexing set A there exists a corresponding element of another set B , then there exists a subset of B consisting only of those elements which are indexed by A , and which is dominated by the set A . (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indexdom | ⊢ ( ( 𝐴 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbc1v | ⊢ Ⅎ 𝑦 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 | |
| 2 | sbceq1a | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) | |
| 3 | 1 2 | ac6gf | ⊢ ( ( 𝐴 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 4 | fdm | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → dom 𝑓 = 𝐴 ) | |
| 5 | vex | ⊢ 𝑓 ∈ V | |
| 6 | 5 | dmex | ⊢ dom 𝑓 ∈ V |
| 7 | 4 6 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
| 8 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 9 | fnrndomg | ⊢ ( 𝐴 ∈ V → ( 𝑓 Fn 𝐴 → ran 𝑓 ≼ 𝐴 ) ) | |
| 10 | 7 8 9 | sylc | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ran 𝑓 ≼ 𝐴 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ran 𝑓 ≼ 𝐴 ) |
| 12 | frn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ran 𝑓 ⊆ 𝐵 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ran 𝑓 ⊆ 𝐵 ) |
| 14 | nfv | ⊢ Ⅎ 𝑥 𝑓 : 𝐴 ⟶ 𝐵 | |
| 15 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 | |
| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 17 | ffun | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → Fun 𝑓 ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → Fun 𝑓 ) |
| 19 | 4 | eleq2d | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( 𝑥 ∈ dom 𝑓 ↔ 𝑥 ∈ 𝐴 ) ) |
| 20 | 19 | biimpar | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑓 ) |
| 21 | fvelrn | ⊢ ( ( Fun 𝑓 ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 23 | 22 | adantlr | ⊢ ( ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 24 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ∧ 𝑥 ∈ 𝐴 ) → [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) | |
| 25 | 24 | adantll | ⊢ ( ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 26 | rspesbca | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ∧ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∃ 𝑦 ∈ ran 𝑓 𝜑 ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ran 𝑓 𝜑 ) |
| 28 | 27 | ex | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) |
| 29 | 16 28 | ralrimi | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ) |
| 30 | nfv | ⊢ Ⅎ 𝑦 𝑓 : 𝐴 ⟶ 𝐵 | |
| 31 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 32 | 31 1 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 |
| 33 | 30 32 | nfan | ⊢ Ⅎ 𝑦 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 34 | fvelrnb | ⊢ ( 𝑓 Fn 𝐴 → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) | |
| 35 | 8 34 | syl | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
| 37 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 → ( 𝑥 ∈ 𝐴 → [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ( 𝑥 ∈ 𝐴 → [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 39 | 2 | eqcoms | ⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( 𝜑 ↔ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 40 | 39 | biimprcd | ⊢ ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 → ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → 𝜑 ) ) |
| 41 | 38 40 | syl6 | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → 𝜑 ) ) ) |
| 42 | 16 41 | reximdai | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 43 | 36 42 | sylbid | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ( 𝑦 ∈ ran 𝑓 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 44 | 33 43 | ralrimi | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 45 | 5 | rnex | ⊢ ran 𝑓 ∈ V |
| 46 | breq1 | ⊢ ( 𝑐 = ran 𝑓 → ( 𝑐 ≼ 𝐴 ↔ ran 𝑓 ≼ 𝐴 ) ) | |
| 47 | sseq1 | ⊢ ( 𝑐 = ran 𝑓 → ( 𝑐 ⊆ 𝐵 ↔ ran 𝑓 ⊆ 𝐵 ) ) | |
| 48 | 46 47 | anbi12d | ⊢ ( 𝑐 = ran 𝑓 → ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ↔ ( ran 𝑓 ≼ 𝐴 ∧ ran 𝑓 ⊆ 𝐵 ) ) ) |
| 49 | rexeq | ⊢ ( 𝑐 = ran 𝑓 → ( ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) | |
| 50 | 49 | ralbidv | ⊢ ( 𝑐 = ran 𝑓 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ) ) |
| 51 | raleq | ⊢ ( 𝑐 = ran 𝑓 → ( ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 52 | 50 51 | anbi12d | ⊢ ( 𝑐 = ran 𝑓 → ( ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 53 | 48 52 | anbi12d | ⊢ ( 𝑐 = ran 𝑓 → ( ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ↔ ( ( ran 𝑓 ≼ 𝐴 ∧ ran 𝑓 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) ) |
| 54 | 45 53 | spcev | ⊢ ( ( ( ran 𝑓 ≼ 𝐴 ∧ ran 𝑓 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ran 𝑓 𝜑 ∧ ∀ 𝑦 ∈ ran 𝑓 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) → ∃ 𝑐 ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 55 | 11 13 29 44 54 | syl22anc | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∃ 𝑐 ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 56 | 55 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∃ 𝑐 ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 57 | 3 56 | syl | ⊢ ( ( 𝐴 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ( ( 𝑐 ≼ 𝐴 ∧ 𝑐 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |