This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frinfm | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fri | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) | |
| 2 | 1 | ancom1s | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 3 | 2 | exp43 | ⊢ ( 𝑅 Fr 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) ) |
| 4 | 3 | 3imp2 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 5 | ssel2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 6 | 5 | adantrr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 10 | 9 | biimpi | ⊢ ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) |
| 11 | 10 | con3i | ⊢ ( ¬ 𝑦 𝑅 𝑥 → ¬ 𝑥 ◡ 𝑅 𝑦 ) |
| 12 | 11 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 → ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ) |
| 13 | 12 | ad2antll | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ) |
| 14 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑦 ◡ 𝑅 𝑥 ) ) | |
| 15 | 14 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) |
| 16 | 15 | ex | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) |
| 17 | 16 | ralrimivw | ⊢ ( 𝑥 ∈ 𝐵 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) |
| 19 | 6 13 18 | jca32 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 20 | 19 | ex | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑥 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) ) |
| 21 | 20 | reximdv2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 23 | 22 | 3ad2antr2 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 24 | 4 23 | mpd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |