This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imsmet . (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsmetlem.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| imsmetlem.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| imsmetlem.7 | ⊢ 𝑀 = ( inv ‘ 𝐺 ) | ||
| imsmetlem.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| imsmetlem.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| imsmetlem.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| imsmetlem.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| imsmetlem.9 | ⊢ 𝑈 ∈ NrmCVec | ||
| Assertion | imsmetlem | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsmetlem.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | imsmetlem.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | imsmetlem.7 | ⊢ 𝑀 = ( inv ‘ 𝐺 ) | |
| 4 | imsmetlem.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 5 | imsmetlem.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 6 | imsmetlem.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 7 | imsmetlem.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 8 | imsmetlem.9 | ⊢ 𝑈 ∈ NrmCVec | |
| 9 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 10 | 1 7 | imsdf | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 11 | 8 10 | ax-mp | ⊢ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ |
| 12 | 1 2 4 6 7 | imsdval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 13 | 8 12 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 14 | 13 | eqeq1d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ) ) |
| 15 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 16 | 1 4 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 17 | 8 15 16 | mp3an12 | ⊢ ( 𝑦 ∈ 𝑋 → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 18 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 19 | 8 18 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 20 | 17 19 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 21 | 1 5 6 | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 22 | 8 20 21 | sylancr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = 0 ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 23 | 1 5 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 24 | 8 23 | ax-mp | ⊢ 𝑍 ∈ 𝑋 |
| 25 | 1 2 | nvrcan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 26 | 8 25 | mpan | ⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 27 | 24 26 | mp3an2 | ⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 28 | 20 27 | sylancom | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ) ) |
| 29 | simpl | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 30 | 17 | adantl | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 31 | simpr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 32 | 1 2 | nvass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
| 33 | 8 32 | mpan | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
| 34 | 29 30 31 33 | syl3anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) ) |
| 35 | 1 2 4 5 | nvlinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
| 36 | 8 35 | mpan | ⊢ ( 𝑦 ∈ 𝑋 → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) = 𝑍 ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( - 1 𝑆 𝑦 ) 𝐺 𝑦 ) ) = ( 𝑥 𝐺 𝑍 ) ) |
| 39 | 1 2 5 | nv0rid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 40 | 8 39 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 41 | 40 | adantr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 42 | 34 38 41 | 3eqtrd | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = 𝑥 ) |
| 43 | 1 2 5 | nv0lid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
| 44 | 8 43 | mpan | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
| 45 | 44 | adantl | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑦 ) = 𝑦 ) |
| 46 | 42 45 | eqeq12d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 47 | 28 46 | bitr3d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = 𝑍 ↔ 𝑥 = 𝑦 ) ) |
| 48 | 14 22 47 | 3bitrd | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 49 | simpr | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 50 | 1 4 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
| 51 | 8 15 50 | mp3an12 | ⊢ ( 𝑧 ∈ 𝑋 → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
| 52 | 51 | adantr | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) |
| 53 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 54 | 8 53 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 55 | 49 52 54 | syl2anc | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 56 | 55 | 3adant3 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ) |
| 57 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 58 | 8 57 | mp3an1 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 59 | 17 58 | sylan2 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 60 | 59 | 3adant2 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) |
| 61 | 1 2 6 | nvtri | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 62 | 8 61 | mp3an1 | ⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 63 | 56 60 62 | syl2anc | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 64 | 13 | 3adant1 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 65 | simp1 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 66 | 17 | 3ad2ant3 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) |
| 67 | 1 2 | nvass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 68 | 8 67 | mpan | ⊢ ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( - 1 𝑆 𝑦 ) ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 69 | 56 65 66 68 | syl3anc | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 70 | simpl | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 71 | 1 2 | nvass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
| 72 | 8 71 | mpan | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( - 1 𝑆 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
| 73 | 49 52 70 72 | syl3anc | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) ) |
| 74 | 1 2 4 5 | nvlinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
| 75 | 8 74 | mpan | ⊢ ( 𝑧 ∈ 𝑋 → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
| 76 | 75 | adantr | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) = 𝑍 ) |
| 77 | 76 | oveq2d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( - 1 𝑆 𝑧 ) 𝐺 𝑧 ) ) = ( 𝑥 𝐺 𝑍 ) ) |
| 78 | 40 | adantl | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑍 ) = 𝑥 ) |
| 79 | 73 77 78 | 3eqtrd | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = 𝑥 ) |
| 80 | 79 | 3adant3 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) = 𝑥 ) |
| 81 | 80 | oveq1d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 𝑧 ) 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
| 82 | 69 81 | eqtr3d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
| 83 | 82 | fveq2d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 84 | 64 83 | eqtr4d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑁 ‘ ( ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) 𝐺 ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 85 | 1 2 4 6 7 | imsdval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) ) |
| 86 | 8 85 | mp3an1 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) ) |
| 87 | 1 2 4 6 | nvdif | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 88 | 8 87 | mp3an1 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 89 | 86 88 | eqtrd | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 90 | 89 | 3adant3 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) ) |
| 91 | 1 2 4 6 7 | imsdval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 92 | 8 91 | mp3an1 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 93 | 92 | 3adant2 | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 94 | 90 93 | oveq12d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑧 ) ) ) + ( 𝑁 ‘ ( 𝑧 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) ) |
| 95 | 63 84 94 | 3brtr4d | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 96 | 95 | 3coml | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 97 | 9 11 48 96 | ismeti | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |