This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvdif.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvdif.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvdif.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvdif.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvdif | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvdif.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvdif.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvdif.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | nvdif.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | simp1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑈 ∈ NrmCVec ) | |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | 6 | a1i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → - 1 ∈ ℂ ) |
| 8 | simp3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 9 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 10 | 6 9 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 12 | 1 2 3 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) ) → ( - 1 𝑆 ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) = ( ( - 1 𝑆 𝐵 ) 𝐺 ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) ) ) |
| 13 | 5 7 8 11 12 | syl13anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) = ( ( - 1 𝑆 𝐵 ) 𝐺 ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) ) ) |
| 14 | 1 3 | nvnegneg | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐵 ) 𝐺 ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) ) = ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) |
| 17 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 18 | 6 17 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 20 | simp2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 21 | 1 2 | nvcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 22 | 5 19 20 21 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 23 | 13 16 22 | 3eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 25 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ∈ 𝑋 ) |
| 26 | 5 8 11 25 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ∈ 𝑋 ) |
| 27 | 1 3 4 | nvm1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) |
| 28 | 5 26 27 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) |
| 29 | 24 28 | eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - 1 𝑆 𝐴 ) ) ) ) |