This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsdfn.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| imsdfn.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | imsdf | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdfn.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | imsdfn.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 4 | 1 3 | nvf | ⊢ ( 𝑈 ∈ NrmCVec → ( normCV ‘ 𝑈 ) : 𝑋 ⟶ ℝ ) |
| 5 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 6 | 1 5 | nvmf | ⊢ ( 𝑈 ∈ NrmCVec → ( −𝑣 ‘ 𝑈 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 7 | fco | ⊢ ( ( ( normCV ‘ 𝑈 ) : 𝑋 ⟶ ℝ ∧ ( −𝑣 ‘ 𝑈 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 9 | 5 3 2 | imsval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 = ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) ) |
| 10 | 9 | feq1d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ↔ ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 11 | 8 10 | mpbird | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |