This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector is a right identity element. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nv0id.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nv0id.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| Assertion | nv0rid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv0id.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nv0id.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 4 | 2 3 | 0vfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) ) |
| 5 | 4 | oveq2d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝐴 𝐺 𝑍 ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 7 | 2 | nvgrp | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
| 8 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 9 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 10 | 8 9 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 11 | 7 10 | sylan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
| 12 | 6 11 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) |