This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvtri.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvtri.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvtri.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvtri | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvtri.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvtri.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvtri.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 5 | 4 | smfval | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( 2nd ‘ ( 1st ‘ 𝑈 ) ) |
| 6 | 5 | eqcomi | ⊢ ( 2nd ‘ ( 1st ‘ 𝑈 ) ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 7 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 8 | 1 2 6 7 3 | nvi | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 𝐺 , ( 2nd ‘ ( 1st ‘ 𝑈 ) ) 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( 2nd ‘ ( 1st ‘ 𝑈 ) ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 9 | 8 | simp3d | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( 2nd ‘ ( 1st ‘ 𝑈 ) ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 10 | simp3 | ⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( 2nd ‘ ( 1st ‘ 𝑈 ) ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( 2nd ‘ ( 1st ‘ 𝑈 ) ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 13 | fvoveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 16 | 13 15 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
| 21 | 18 20 | breq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 22 | 16 21 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 23 | 12 22 | syl5 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 24 | 23 | 3impia | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝑈 ∈ NrmCVec ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
| 25 | 24 | 3comr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |