This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsdval2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| imsdval2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| imsdval2.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| imsdval2.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| imsdval2.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | imsdval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdval2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | imsdval2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | imsdval2.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | imsdval2.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | imsdval2.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 7 | 1 6 4 5 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 8 | 1 2 3 6 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |