This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1obl.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasf1obl.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasf1obl.f | |- ( ph -> F : V -1-1-onto-> B ) |
||
| imasf1obl.r | |- ( ph -> R e. Z ) |
||
| imasf1obl.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
||
| imasf1obl.d | |- D = ( dist ` U ) |
||
| imasf1obl.m | |- ( ph -> E e. ( *Met ` V ) ) |
||
| imasf1obl.x | |- ( ph -> P e. V ) |
||
| imasf1obl.s | |- ( ph -> S e. RR* ) |
||
| Assertion | imasf1obl | |- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( F " ( P ( ball ` E ) S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasf1obl.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasf1obl.f | |- ( ph -> F : V -1-1-onto-> B ) |
|
| 4 | imasf1obl.r | |- ( ph -> R e. Z ) |
|
| 5 | imasf1obl.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
|
| 6 | imasf1obl.d | |- D = ( dist ` U ) |
|
| 7 | imasf1obl.m | |- ( ph -> E e. ( *Met ` V ) ) |
|
| 8 | imasf1obl.x | |- ( ph -> P e. V ) |
|
| 9 | imasf1obl.s | |- ( ph -> S e. RR* ) |
|
| 10 | f1ocnvfv2 | |- ( ( F : V -1-1-onto-> B /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
|
| 11 | 3 10 | sylan | |- ( ( ph /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
| 12 | 11 | oveq2d | |- ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( ( F ` P ) D x ) ) |
| 13 | 1 | adantr | |- ( ( ph /\ x e. B ) -> U = ( F "s R ) ) |
| 14 | 2 | adantr | |- ( ( ph /\ x e. B ) -> V = ( Base ` R ) ) |
| 15 | 3 | adantr | |- ( ( ph /\ x e. B ) -> F : V -1-1-onto-> B ) |
| 16 | 4 | adantr | |- ( ( ph /\ x e. B ) -> R e. Z ) |
| 17 | 7 | adantr | |- ( ( ph /\ x e. B ) -> E e. ( *Met ` V ) ) |
| 18 | 8 | adantr | |- ( ( ph /\ x e. B ) -> P e. V ) |
| 19 | f1ocnv | |- ( F : V -1-1-onto-> B -> `' F : B -1-1-onto-> V ) |
|
| 20 | 3 19 | syl | |- ( ph -> `' F : B -1-1-onto-> V ) |
| 21 | f1of | |- ( `' F : B -1-1-onto-> V -> `' F : B --> V ) |
|
| 22 | 20 21 | syl | |- ( ph -> `' F : B --> V ) |
| 23 | 22 | ffvelcdmda | |- ( ( ph /\ x e. B ) -> ( `' F ` x ) e. V ) |
| 24 | 13 14 15 16 5 6 17 18 23 | imasdsf1o | |- ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( P E ( `' F ` x ) ) ) |
| 25 | 12 24 | eqtr3d | |- ( ( ph /\ x e. B ) -> ( ( F ` P ) D x ) = ( P E ( `' F ` x ) ) ) |
| 26 | 25 | breq1d | |- ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( P E ( `' F ` x ) ) < S ) ) |
| 27 | 9 | adantr | |- ( ( ph /\ x e. B ) -> S e. RR* ) |
| 28 | elbl2 | |- ( ( ( E e. ( *Met ` V ) /\ S e. RR* ) /\ ( P e. V /\ ( `' F ` x ) e. V ) ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) |
|
| 29 | 17 27 18 23 28 | syl22anc | |- ( ( ph /\ x e. B ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) |
| 30 | 26 29 | bitr4d | |- ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) |
| 31 | 30 | pm5.32da | |- ( ph -> ( ( x e. B /\ ( ( F ` P ) D x ) < S ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
| 32 | 1 2 3 4 5 6 7 | imasf1oxmet | |- ( ph -> D e. ( *Met ` B ) ) |
| 33 | f1of | |- ( F : V -1-1-onto-> B -> F : V --> B ) |
|
| 34 | 3 33 | syl | |- ( ph -> F : V --> B ) |
| 35 | 34 8 | ffvelcdmd | |- ( ph -> ( F ` P ) e. B ) |
| 36 | elbl | |- ( ( D e. ( *Met ` B ) /\ ( F ` P ) e. B /\ S e. RR* ) -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) |
|
| 37 | 32 35 9 36 | syl3anc | |- ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) |
| 38 | f1ofn | |- ( `' F : B -1-1-onto-> V -> `' F Fn B ) |
|
| 39 | elpreima | |- ( `' F Fn B -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
|
| 40 | 20 38 39 | 3syl | |- ( ph -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
| 41 | 31 37 40 | 3bitr4d | |- ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> x e. ( `' `' F " ( P ( ball ` E ) S ) ) ) ) |
| 42 | 41 | eqrdv | |- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( `' `' F " ( P ( ball ` E ) S ) ) ) |
| 43 | imacnvcnv | |- ( `' `' F " ( P ( ball ` E ) S ) ) = ( F " ( P ( ball ` E ) S ) ) |
|
| 44 | 42 43 | eqtrdi | |- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( F " ( P ( ball ` E ) S ) ) ) |