This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imageval | ⊢ Image 𝑅 = ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage | ⊢ Fun Image 𝑅 | |
| 2 | funrel | ⊢ ( Fun Image 𝑅 → Rel Image 𝑅 ) | |
| 3 | 1 2 | ax-mp | ⊢ Rel Image 𝑅 |
| 4 | mptrel | ⊢ Rel ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 5 6 | breldm | ⊢ ( 𝑦 Image 𝑅 𝑧 → 𝑦 ∈ dom Image 𝑅 ) |
| 8 | fnimage | ⊢ Image 𝑅 Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } | |
| 9 | 8 | fndmi | ⊢ dom Image 𝑅 = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 10 | 7 9 | eleqtrdi | ⊢ ( 𝑦 Image 𝑅 𝑧 → 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 11 | 5 6 | breldm | ⊢ ( 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 → 𝑦 ∈ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ) |
| 12 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) | |
| 13 | 12 | dmmpt | ⊢ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = { 𝑥 ∈ V ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 14 | rabab | ⊢ { 𝑥 ∈ V ∣ ( 𝑅 “ 𝑥 ) ∈ V } = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } | |
| 15 | 13 14 | eqtri | ⊢ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 16 | 11 15 | eleqtrdi | ⊢ ( 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 → 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 17 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 “ 𝑥 ) = ( 𝑅 “ 𝑦 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 “ 𝑥 ) ∈ V ↔ ( 𝑅 “ 𝑦 ) ∈ V ) ) |
| 19 | 5 18 | elab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ↔ ( 𝑅 “ 𝑦 ) ∈ V ) |
| 20 | 5 6 | brimage | ⊢ ( 𝑦 Image 𝑅 𝑧 ↔ 𝑧 = ( 𝑅 “ 𝑦 ) ) |
| 21 | eqcom | ⊢ ( 𝑧 = ( 𝑅 “ 𝑦 ) ↔ ( 𝑅 “ 𝑦 ) = 𝑧 ) | |
| 22 | 17 12 | fvmptg | ⊢ ( ( 𝑦 ∈ V ∧ ( 𝑅 “ 𝑦 ) ∈ V ) → ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑅 “ 𝑦 ) ) |
| 23 | 5 22 | mpan | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑅 “ 𝑦 ) ) |
| 24 | 23 | eqeq1d | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = 𝑧 ↔ ( 𝑅 “ 𝑦 ) = 𝑧 ) ) |
| 25 | funmpt | ⊢ Fun ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) | |
| 26 | df-fn | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ↔ ( Fun ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ∧ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) ) | |
| 27 | 25 15 26 | mpbir2an | ⊢ ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 28 | 19 | biimpri | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 29 | fnbrfvb | ⊢ ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) → ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) | |
| 30 | 27 28 29 | sylancr | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 31 | 24 30 | bitr3d | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( 𝑅 “ 𝑦 ) = 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 32 | 21 31 | bitrid | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( 𝑧 = ( 𝑅 “ 𝑦 ) ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 33 | 20 32 | bitrid | ⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( 𝑦 Image 𝑅 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 34 | 19 33 | sylbi | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } → ( 𝑦 Image 𝑅 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 35 | 10 16 34 | pm5.21nii | ⊢ ( 𝑦 Image 𝑅 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) |
| 36 | 3 4 35 | eqbrriv | ⊢ Image 𝑅 = ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) |